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Abstract. The leap from decision support to autonomous systems has
often raised a number of issues, namely system safety, soundness and
security. Depending on the field of application, these issues can either
be easily overcome or even hinder progress. In the case of Supply Chain
Management (SCM), where system performance implies loss or profit,
these issues are of high importance. SCM environments are often dy-
namic markets providing incomplete information, therefore demanding
intelligent solutions which can adhere to environment rules, perceive vari-
ations, and act in order to achieve maximum revenue. Advancing on the
way such autonomous solutions deal with the SCM process, we have
built a robust, highly-adaptable and easily-configurable mechanism for
efficiently dealing with all SCM facets, from material procurement and
inventory management to goods production and shipment. Our agent has
been crash-tested in one of the most challenging SCM environments, the
trading agent competition SCM game and has proven capable of provid-
ing advanced SCM solutions on behalf of its owner. This paper introduces
Mertacor and its main architectural primitives, provides an overview of
the TAC SCM environment, and discusses Mertacor’s performance.

1 Introduction

Current trends in Decision Support (DS) Supply Chain Management (SCM)
software tend to integrate Supplier Relationship Management (SRM), Customer
Relationship Management (CRM), and Enterprise Resource Planning (ERP)
primitives, in order to provide competitive business solutions. DS SCM software
efficiently monitors and records all transactions, while supply chain strategies
are applied at various stages of the process, in order to reduce cost and improve
service levels [1].

Nevertheless, in such systems human expertise is imperative, and this usu-
ally leads to their deprecation, from advanced DS systems to mere transactional



databases. In addition, the flourishing of virtual organizations and electronic
marketplaces, has led to the shift from traditional markets, relying on long-term
trading partner relationships, to more dynamic SCM environments, where goods
(raw material, end products) are auctioned between interested parties (suppli-
ers, manufacturers, customers), and advanced bidding strategies are employed in
order to achieve optimal results. The structure of these auction environments re-
quires computational strength and accurate timing, therefore implying the need
for autonomous SCM solutions, which shall identify rapid market changes and
handle them in a cost-effective manner, in order to profit from specific econom-
ical regimes. Nevertheless, these SCM solutions should also satisfy all security,
safety and soundness issues that may arise in such uncertain environments.

Recent research literature acknowledges intelligent agents as the most appro-
priate technology for trading and auctioning in electronic markets [2]. Equipped
with smart strategies and efficient learning techniques, agents can provide robust
solutions to deal with uncertainty and complexity. The more dynamic the SCM
environment, the more intelligent the agent has to be.

In this context, we introduce Mertacor, an agent that employs a robust
SCM mechanism for trading within a dynamic SCM environment. Mertacor
takes over all company activities, aiming to maximize company revenue. Through
extensive analysis, a number of key points within the SCM process have been
identified and incorporated into the agent’s trading mechanism. By the use of
heuristics, SCM business rules, scheduling algorithms, data mining techniques
and fail-safe mechanisms, Mertacor proves extremely capable of trading with
other entities, within a dynamic, multi-variate, uncertain environment. Mertacor
performance has been extensively tested through its participation in one of the
most demanding trading agent competitions, the Trading Agent Competition
(TAC) SCM game (http://www.sics.se/tac).

The rest of the paper is organized as follows: Section 2 provides an overview
of the TAC SCM environment, in order to specify the framework Mertacor was
tested on. Section 3 describes the functional characteristics of Mertacor, while
Section 4 delves deeper into the implementation with respect to TAC SCM.
Finally, Section 5 discusses Mertacor results at the TAC SCM game, while
Section 6 summarizes work conducted and concludes the paper.

2 TAC SCM Overview

Within the TAC SCM game [3], agents act as Personal Computer (PC) manufac-
turers, competing with others on supplier and customer contracts. Throughout
the duration of the game, each agent has to: (a) negotiate supply contracts,
(b) bid for customer orders, (c) manage daily assembly activities and, (d) ship
completed orders to customers.

A maximum number of six agents can connect to the TAC SCM game server,
which simulates the suppliers and customers, and provides banking, production,
and warehousing services to the competitors. Each agent is running its own PC
assembling unit, which has limited production capacity. Sixteen (16) different



types of PCs can be assembled, each requiring a different component compilation.
The ten (10) different components available (CPUs, Motherboards, Memory, and
Hard disk drives) can be procured through sending RFQs (Request For Quote)
and issuing orders to the suppliers. Every day customers send RFQs and agents
bid on them, depending on their ability to satisfy delivery dates and prices. The
bid price should not exceed the reserve price the customer requires, which is
between 75 − 125% of nominal price of PC components. The next day, if an
agent’s quote is a winning offer, customer sends the order to the agent. To get
paid, the agent must either assemble the ordered PCs or supply the customer
with PCs already stocked in inventory on time. If an agent fails in delivering
customers orders, it is charged with a penalty. Winner is declared the agent
with the greater revenue at the end of the game. Game length is 220 days, with
each day lasting 15 seconds. Fig. 1 provides a schematic representation of the
game. A more detailed description of the game can be found at [4].

3 Agent Mertacor

Taking a closer look at the TAC SCM specifications, one can easily distinguish
four (4) primary SCM facets: a. Component Supplies Procurement, dealing with
negotiations on cheap component contracts, b. Inventory Management, manag-
ing stock requirements c. Production and Delivery Scheduling, and d. Customer
Bidding, dealing with negotiations on PC sales. In order to better manage and
efficiently act on each one, Mertacor has employed a modular architecture. Each

Fig. 1. An overview of the TAC SCM game.



Fig. 2. The architecture of agent Mertacor.

task is delegated to a specific module, while all modules act in close collabora-
tion. Mertacor, being a wrapper around the modules, ensures communication
with suppliers and customers. Such a modular architecture can be easily applied
to other environments also, outside the constraints of the competition. Following
other successful paradigms [5, 6], Mertacor exploits the integration of techniques
from the Operations Research (OR) literature, namely heuristics and adaptive
algorithms, as well as statistical modeling. The overall Mertacor architecture is
illustrated in Fig. 2, where four core modules can be identified:

1. The Inventory Module (IM)
2. The Procuring Module(PM)
3. The Factory Module (FM), and
4. The Bidding Module (BM)

IM constitutes the cornerstone of one’s supply chain structure. SCM litera-
ture provides many paradigms of IM techniques, i.e. make-to-stock and make-to-
order. Mertacor realizes an assemble-to-order system (ATO), a hybrid combina-
tion of the two aforementioned paradigms, which proves suitable in environments
where assembly times are significantly smaller than replenishment times [7]. Ad-
ditionally, an ATO system eliminates end-product inventory, reduces storage
costs, improves forecast accuracy through demand aggregation, and provides
quicker response time for order fulfillments through risk pooling.

Both PM and FM are based on heuristics. PM, which is primarily responsible
for balancing the need for cheap component procurement to the running needs of
the assembly line, attempts prediction of future demands, in order to pre-order
affordable components. For FM, which is responsible for producing accurate



schedules and for providing the bidder with information on the factory produc-
tion capacity, a simulation procedure along with some heuristic algorithms was
adopted. The simulator creates a projection of what the factory should expect
in the near future (usually when conditions are less likely to change) and then
diffuses this information to the rest of the modules.

With respect to bidding, a statistical model, capable of predicting the winning
price of an order, was developed. Certain customer RFQ properties and the
running SCM environment state are used to predict. Training data are derived
from logs of previously played games, while some simple but effective fail-safe
mechanisms were added, in case the predicted models are invalid. This learning
approach proved to be fairly accurate, abiding by the standard rules of a market.
Thus, the simulation can be considered realistic and the learning methodology
applicable in real life domains.

4 Agent Modules

4.1 Inventory Management

An ATO system works as follows: The main goal of the system is to define
certain inventory levels (thresholds) that need to be satisfied and below which
replenishment is needed. These thresholds are calculated in real time for each
component using the following equation [1, 7]:

R = DAV GLAV G + z
√

LAV GD2
STD + D2

AV GL2
STD

where D is the demand for specific component, L is the supplier lead time and
z is a safety factor denoting the service level.

Demand is given in terms of products from the orders made by the customers.
Statistics of product demand may vary making the thresholds more unstable.
Nevertheless, by approximating demand in terms of product ranges (high-end,
mid-end, low-end), smaller variations can be achieved. Additionally, in ATO no
finished product inventory is kept (lower storage costs) and since components
are shared along many products: (a) the levels of the thresholds are lowered due
to aggregation of demands (b) internal component exchanges are applicable in
order to avoid late orders and penalties. Component demand is calculated on the
range demand by applying the scheme in Fig. 3, which has been adjusted to the
TAC SCM specs. Minimum and maximum levels are also coded as fail-safes. The
aforementioned system can handle unique components for the product families
and can be extended to become a configure-to-order system (CTO), where there
are no pre-specified end-products and the customer can personally select the set
of components [7].

4.2 Component Procurement

Mertacor’s performance is highly dependent on two factors: (a) having an in-
ventory filled up with cheap components and (b) satisfying the inventory levels,



Comp. ID Low Medium High

1 0.4 0.33 0.0
2 0.0 0.17 0.6
3 0.6 0.17 0.0
4 0.0 0.33 0.4
5 0.4 0.5 0.6
6 0.6 0.5 0.4
7 0.8 0.5 0.4
8 0.2 0.5 0.8
9 0.6 0.5 0.4
10 0.4 0.5 0.6

Fig. 3. Mapping range demand to component demand.

since each delayed order implies a penalty and after five days, order cancellation.
In order to cope with these requirements, we have developed a simple strategy,
which is divided into two distinct phases: initial and standard.

Mertacor initial procurement strategy is followed for the first two days. The
RFQs sent to the suppliers on Day-0 and Day-1 aim to build an initial inventory
so that Mertacor can start production immediately and therefore start bidding
for orders from the first day. The components procured are predictably expensive,
nevertheless their usability is increased, since at the beginning of the game,
competition is not that strong, leading to higher product prices. On Day-1,
another bundle of RFQs is sent, aiming to acquire relatively large quantities of
cheap components for the following days.

On Day-2 Mertacor switches to a normal-state procurement strategy, de-
signed to satisfy the aforementioned goals. It uses all five (5) available RFQs
per component and per supplier each day, to maximize knowledge of the sup-
plier’s selling prices (probing). RFQs sent by our agent can be divided into three
categories:

– Normal procurement RFQs, aiming to satisfy inventory reorder levels and
allow bidding for customer orders in the near future. Quantities for these
RFQs are calculated based on the reorder levels of the inventory manager.

– Critical procurement RFQs, a special state in which our agent tries to procure
components in order to satisfy customer orders.

– Early procurement RFQs, in an effort to obtain low-priced components sev-
eral days before they may be needed. These RFQs indicate quantities that
if ordered, they would cause inventory to exceed reorder levels, so that there
is no need for normal procurement after some posterior point in the game.

4.3 Production and Delivery Scheduling

The FM is responsible for: (a) generating production and delivery schedules
schedules, (b) adjusting inventory levels, and (c) adjusting available factory cy-
cles. This module is also assigned the task of integrating the procuring, inventory



and sales parts. FM is the most resource demanding module of the agent. It im-
plements a factory simulator, which simulates the operation of the factory for
several days in the future, attempting to produce a draft of what will follow,
based on knowledge on future supplier deliveries, customer deliveries, customer
orders, future production and delivery schedules. When the schedules are pro-
duced, they are communicated to the interested parties. The number of future
days Mertacor is simulating is defined as look-ahead time. For the current im-
plementation the look-ahead time has been specified to fifteen (15) days.

The algorithm used by the factory simulator to predict forecoming inventory
needs is iterative. For each day of the look-ahead period starting from today, the
agent has to:

1. Update current inventory with supplier deliveries expected today
2. Update inventory with products assembled from factory (last schedule)
3. Remove components that are needed for tomorrows production
4. Remove products that are to be delivered tomorrow
5. Remaining inventory is the starting inventory for next day

This way the agent is aware of the expected inventory levels and factory cycles
for the next 15 days, and alerts the bidder not to exceed these levels.

The daily production schedule includes the orders that fit within the daily
factory capacity (2000 cycles). In case there are more orders and the capacity is
exhausted, a greedy scheduling procedure is employed:

– Customer orders are sorted based on due date
– Orders with the same due date are sorted based on penalty
– Orders with similar due dates and penalties are sorted based on expected

profit, that is unit price x quantity

Another parameter taken into account are the potential orders that should
be scheduled. Not all available factory capacity for future days is committed
to current RFQs, but a constantly decreasing fraction of the factory’s nominal
capacity. Thus, it is possible to save cycles for profitable RFQs, expected in the
next days. If an RFQ can be successfully scheduled, the bidder is given a signal
to go ahead and place a bid for that RFQ.

4.4 Bidding

Our bidding strategy is focused on finding the optimal bidding price for each
RFQ received and then deciding on which of these RFQs to bid, sorting on
anticipated profit. Mertacor’s initial hypothesis is that every bid it places will
be successful, and in order to realize it, a bidding mechanism based on machine
learning techniques has been implemented. Through this mechanism, the market
is modeled off-line based on data from past games. Twenty five (25) attributes
were initially selected. Through a cross-validation procedure, using multiple lin-
ear regression (MLR) and backward elimination based on the F-statistic, the
most parsimonious model within “one-standard-error” from the minimum was



picked, leaving seven final predictors [8]. The initial set of attributes, which was
formulated by intuition, is the same as in [9], while the data mining algorithm
that has eventually been selected to model the market is the M5’ [10], since
it outperformed other similar algorithms with respect to root mean square er-
ror (RMSE). The optimal, in our case, β coefficients for MLR can be found in
Table 1.

Table 1. The attributes used to predict order prices. These are: the RFQ’s due date,
its reserve price, the highest and lowest prices for the previous two days, and the
current demand of PCs. The value of the intercept was 1515.94.

Feature Due Date Res. Price High-1 High-2 Low-1 Low-2 Demand

β -8.08 15.69 161.04 66.45 67.97 39.42 9.32

This modeling provides us with the parameters that potentially affect the
bidding strategies of the marketplace. Since inputs are normalized, the β values
are directly comparable and their signs indicate the correlation between the
input and the output. Interesting rules that may be derived are: the higher the
highest and lowest prices for the past two days, the higher the current price; the
later an order is due, the lower its price; the bigger the reserve price, the higher
the offer to the customer; the higher the demand from the customer-side, the
higher the prices, since there is less competition.

The bidding module also incorporates two on-line modeling mechanisms: a
fail-safe mechanism designed to function complementary to the trained models,
handling unexpected circumstances of selling prices, and an overbidding mecha-
nism to help with filling the capacity given by the scheduler.

The former, named the follower for its ability to follow prices on-line, eval-
uates the minimum and maximum prices for PCs ordered the previous day as
provided by the daily price reports, and predicts the approximate level of bid-
ding price for each RFQ. The follower deploys linear interpolation based on the
assumption that the maximum price paid corresponds to the maximum customer
RFQ reserve price, while the minimum price paid corresponds to the minimum
RFQ reserve price. Let PM be the model price and PF the follower price. Then,
the final bid price is calculated as follows:

if(|PF − PM |/PM )% < threshold(10%), PM , else, PF

Experimenting has shown that this fail-safe mechanism has significantly helped
Mertacor through sudden market changes, especially at the start and end peri-
ods of games, when the game unfolded in unpredictable manners. Results showed
a 20% improvement in RMSE accuracy compared to other on-line naive mech-
anisms [11]. Additionally, to support the use of the off-line model versus the
on-line, a increase of 13% in RMSE accuracy was measured, favoring the former
approach.



As far as overbidding is concerned, a scheme using the k-Nearest Neighbors
(k-NN) algorithm [10] was developed to produce a probability of acceptance for
each bid placed. Having identified the probability of a RFQ becoming an order,
the bidding module signals the scheduler to commit only the fraction of the
capacity that corresponds to that probability, letting the remaining capacity for
the next RFQ in the row. The probability is calculated as the fraction of the
n neighbors that became orders versus the total number of neighbors k (n/k).
For the TAC SCM game, a value of k=10 was used. The neighbors/exemplars
are RFQs sent to the customers the previous day(s) tagged either as accepted
or rejected. The set of attributes used are the attributes selected for the off-line
model.

5 Competition Results

Mertacor participated in the TAC SCM 2005 competition and performed quite
well in all rounds. It came 11th among the 32 teams that participated in the qual-
ifying phase and 10th among the 25 teams in the seeding phase. Going through
the results of the qualifying rounds, we came to the conclusion that the reduced
Mertacor efficiency was due to the fact that our agent was trained to cope with
strong competition, accomplished only when six competitors participated. This,
unfortunately, was not certain through the preliminary phase. During the finals,
though, where the games played were much more competitive than in the pre-
vious rounds, Mertacor was a top scorer in the quarter finals and placed 3rd
in the semi finals. At the final round Mertacor competed with the other 5 best
scoring agents and finished 3rd, with a positive bank balance (See Table 2).

Table 2. Mean skills of the agents in the finals for a total of 16 games. The skills
are: final bank balance (Score), revenue, cost of components, storage costs, delivery
performance and factory utilization.

Agent Score ($) Revenue ($) Material ($) Storage ($) Del. (%) Util. (%)

TacTex-05 4.741 M 108.586 M 100.614 M 2.013 M 97,75 87,81
SouthamptonSCM 1.604 M 108.246 M 102.375 M 2.843 M 98,06 87,75
Mertacor 546 272 75.582 M 72.639 M 1.730 M 98,88 60,63
Deep Maize -220 503 107.681 M 103.309 M 2.645 M 97,31 85,13
MinneTAC -311 844 81.903 M 79.728 M 1.887 M 99,88 65,00
Maxon -1.985 M 71.105 M 68.588 M 3.520 M 100 56,19

Even though numerous games must be played in order to evaluate the “true”
value of an agent and its game profile with respect to the others, we will restrict
our analysis to the results in Table 2 displaying some of the strong points and
drawbacks of the developed design. First of all, the ATO system employed, along
with the procurement strategy followed, resulted to an agent with the lowest



storage costs, high delivery performance rates from agents willing to risk the
100% delivery rate for more profit, and low material costs. One could argue that
the last metric also accounts for the inability to compete for orders, but once
put into perspective of Mertacor’s performance, good inventory management is
implied. In addition, the bidding module ensures a high Average Selling Price
(ASP) for the agent (2nd with a 0.776 normalized ASP - 0,780 for agent Maxon).

One of the most characteristic drawbacks of the final was the expensive con-
tracts with suppliers, placing Mertacor 6th, with 0,726 average normalized CPU
buying price (the most expensive component - 0,694 for agent Southampton-
SCM). Another bottleneck was the low factory utilization (equivalent to low
revenue) that can be interpreted to low throughput (rate of products out of the
factory versus components in the factory) causing additional reduction to profit.
A balance between high selling prices and high throughput is imperative.

6 Conclusions

In this paper, we have introduced Mertacor, a SCM agent designed to participate
in the TAC SCM game 2005. The agent employs a combination of OR, heuristic
and statistical modeling techniques, in order to manage a wide range of activities
in an efficient manner. The architecture proposed is generic, and can be applied
to other SCM environments also. Focusing on specific points, one can see that
the inventory management system, designed for the IBM PC production line,
performed very well, in an uncertain and dynamic environment, outside the
assumptions made by the authors. The learning models were able to capture the
dynamics of the markets at hand, while the heuristics applied to the supplies and
the factory modules worked well enough for the agent to be ranked 3rd in the
competition. As far as the TAC community is concerned, we have introduced
some novel ideas that could help further improve the game. Future research
work on Mertacor includes the development of more accurate predictors on the
behavior of both customers and suppliers. That, along with some improvements
in the heuristics, would allow a bigger factory throughput, which is the confining
factor for Mertacor.
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