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Abstract. Energy markets have undergone important changes at the
conceptual level over the last years. Decentralized supply, small-scale pro-
duction, smart grid optimization and control are the new building blocks.
These changes offer substantial opportunities for all energy market stake-
holders, some of which however, remain largely unexploited. Small-scale
consumers as a whole, account for significant amount of energy in current
markets (up to 40%). As individuals though, their consumption is triv-
ial, and their market power practically non-existent. Thus, it is necessary
to assist small-scale energy market stakeholders, combine their market
power. Within the context of this work, we propose Consumer Social
Networks (CSNs) as a means to achieve the objective. We model con-
sumers and present a simulation environment for the creation of CSNs
and provide a proof of concept on how CSNs can be formulated based on
various criteria. We also provide an indication on how demand response
programs designed based on targeted incentives may lead to energy peak
reductions.

1 Introduction

The necessity for sustainability has transformed the traditional power production
scheme to a distributed energy resource one, while the deregulation of energy
markets has generated great business potential for energy-related companies,
along however with a number of both technical and policy challenges. In addi-
tion, the Smart Grid paradigm is here to stay. The great advancements in ICT
have boosted R&D activities aiming to automate the monitoring and control
of power grids, enhance their management, offer alternatives to individual elec-
tricity consumers, and achieve large scale energy savings. The Smart Grids are
extensively researched at academic and commercial level; however, what is even
more important, is that they have found their way into international strategic
planning directives [Dollen(2009)].

The necessity rises, thus, for the development of dynamic small-scale con-
sumer models, which could be used in order to help all involved energy market



stakeholders understand consumers’ market power, assess the impact and pos-
sible consequences of certain policies applied to them, and identify potential
profits/gains. Practically, among all issues of interest to the various stakehold-
ers, two are the ones that draw immediate attention: a) from the power system
side, the reduction of peaks in demand and, b) from the consumer side, the
potential to reduce costs.

The concept of Consumer Social Networks (CSNs) comprises the basis of the
solution proposed in this work. A consumer corresponds to a, macroscopically,
insignificant consumption with a rather limited margin for demand control. Ob-
viously, the market power of such a customer is also limited, and the respective
incentives offered to him/her may be insignificant for him/her to act. It is only on
the aggregate consumption of a group of consumers that power peaks in demand
and energy consumption become important. Therefore, the concept of CSNs is
expected to increase the consumers’ market power, and thus their motivation to
optimize their aggregate consumption by controlling their demand.

CSNs may be initiated in various ways and by various stakeholders, in order
to support the above scenario:

1. By the small-scale customers themselves, for strengthening their market
power and increasing their bargaining options.

2. By ESCOs (Energy Service Companies), as means for performing customer
segmentation and for providing different incentives to each identified con-
sumer group, according to their profile.

3. By DSOs (Distribution System Operators), in order to perform demand
response and reduce peaks in power curves, thus improving power system
stability.

4. Through a custom, energy related social network or through an applica-
tion inside an existing social network for energy savings through gamifi-
cation mechanisms [Zichermann and Cunningham(2011),Bartle(1996)], en-
abling competition among members (badges, campaigns, rankings etc.).

In order to support the CSN concept and its applicability, we designed and
developed a simulation model with social characteristics and have worked to-
wards identifying the types of network structures that could lead to stakeholder
benefits. Further extending research presented in [Symeonidis et al.(2011)] and
[Chatzidimitriou et al.(2013)], we perform analysis for the identification of mod-
eling parameters that should be taken into account in order to build CSNs that
can capture behavior dynamics and can lead to peak reduction (and, thus, money
savings).

In the remainder of this paper, Section 2 discusses state-of-the-art approaches
on CSNs and Demand Side Management (DSM) techniques. Section 3 presents
the modeling methodology adopted, while Section 4 discusses results on the
various networks created and perform property-based analysis of the generated
CSNs. Finally, Section 5 summarizes work performed, comments on future re-
search steps and concludes the paper.



2 Background and Related Work

During the last years, social networks have been in the center of attention for var-
ious research communities. Various methodologies based on resource attributes
and have been applied in different fields, but their use in energy markets remains
limited, despite the fact that they could have an important influence for their
operation.

Consumer social networks have also been leveraged for motivating people
into reducing CO2 emissions as well. [Mankoff et al.(2007)] proposed to explore
the use of social networking websites in supporting individual reduction in per-
sonal energy consumption. They integrated feedback on ecological footprint data
into existing social networking and Internet portal sites which allowed frequent
feedback on performance, while enabling the exploration motivational schemes
that leverage group membership. Different motivational schemes are compared
in three ways: a) reduction in CO2 emission, b) lifestyle changes, and c) ongoing
use by users who join the site (retention).

Approaches like the ones followed by Opower3 and Bidgely4, attempt to
empower ESCOs with actionable insights for their customers by engaging the
latter in a social loop with tips on their energy efficiency and comparative graphs
on others’ consumption. Consumers become the center of attention in the early
2012, when the Which? campaigning charity5 started the “Big Switch” initiative,
a completely new way to buy - and save money on - people’s energy. So, using
the power of thousands of consumers, Which? planned to negotiate with energy
suppliers in the UK and seek to secure a market-leading energy deal and help
people make the switch.

Reducing peak demand is an important part of ongoing research efforts. To
reduce peak demand, smart grid utilities were introduced [Mishra et al.(2013)],
that use variable rate electricity prices. Recent efforts have shown how variable
rate pricing can incentivize consumers to use energy storage to cut their electric-
ity bill, by storing energy during inexpensive off-peak periods and using it during
expensive peak periods. In order to save energy and reduce peak, even control
strategies using supercapacitors have been proposed [Ciccarelli et al.(2012)] to
store energy that will be used later. Demand side management is also under inves-
tigation [Finn et al.(2013)] to limit the requirement for curtailment and further
facilitate the integration of renewable energy by shifting the timing of electrical
demand in response to various signals. In another approach [Rowe et al.(2014)]
propose scheduling algorithms that preprocesses forecast data prior to a plan-
ning phase to build in resilience to the inevitable errors between the forecasted
and actual demand.

Regarding demand side management, [Kota et al.(2012] envisage the forma-
tion of cooperatives of medium-large consumers and the design of a mecha-
nism for allowing cooperatives to regularly participate in the existing electricity

3 http://opower.com
4 http://www.bidgely.com
5 http://www.which.co.uk/



markets by providing electricity demand reduction services to the Grid. The
proposed Consumer Demand Side Management (CDSM) mechanism employs
agents that proactively place bids in the electricity market, contribute to the
flattening of the energy consumption curve for the day ahead and distributes
profit among the cooperating agents. [Vasirani et al.(2013)] focus on the con-
cept of a Virtual Power Plant (VPP) and attempt to define a mechanism for
creating coalitions between wind generators and electric vehicles, where wind
generators seek to use electric vehicles (EVs) as a storage medium to overcome
the vagaries of generation.

From an energy cooperatives perspective there are some interesting works
such as [Akasiadis et al.(2013)] and [Veit et al.(2013)] that provide incentives
to agents to form cooperatives in order to reduce their electricity bills, while on
the same time flatten the demand curve through load shifting. In our work there
is no need to have a cooperative in order to apply the technique, but the ESCO
or DSO can make a virtual CSN from consumers in order to achieve its goals.

From all related work, one may say that work by [Vinyals et al.(2012)] is
closer to our approach. However, the hypothesis of [Vinyals et al.(2012)] is dif-
ferent from our approach in three ways. First, authors consider the existence of
social interaction between consumers, thus links already exist; we define links
based on the ”proximity” of consumers, and model consumers accordingly. Sec-
ond, authors do not consider network topology, and how consumers are assigned
under different ML (medium-low) voltage transformers; this is probably not
important if applied in large-scale (since authors are referring to the market),
nevertheless has to be taken into consideration from the power network perspec-
tive. What is more important, though, is that the authors do not focus on the
behavioral aspects of the network and how they will act/interact, given specific
incentives; we focus on how structural properties of a generated network will
influence peak reduction.

Based on this approach, we solve the problem of the formation and response
of a CSN as a graph coloring problem with constraints between network nodes.
Experiments has shown that, given the appropriate parameters for building the
network, it is possible to achieve substantial peak reduction, if the right in-
centives are given. The modeling methodology followed and the exact problem
statement are discussed next.

3 Modeling Methodology

The core modeled entity in the developed agent-based simulation model is the
Consumer Agent (CA) - residential, commercial or industrial - which efficiently
controls its own power consumption under a personal utility model. CAs may
choose whether an electric consumption activity can be avoided, performed at
an earlier time or postponed, given appropriate incentives. In order to enhance
and better coordinate the aggregate effects and the rewards given for helping
ameliorating system emergencies, the CA can join coalitions, in our case defined
as Consumer Social Networks (CSNs).



In contrast to typical social networks, in an electrical grid there is no obvious
link between between nodes (CAs), other than the grid structure (electrical
network topology). Thus, a separation between the structure and the behavior
of the network should be made. The goal of the CSNs is to manipulate the
dynamics (behavior) of the physical network (structure) through information
diffusion. Such a diffusion of information could take place via various means, i.e.
social media, web campaigns, smart metering etc.

Our objective is to understand and assess behavior changes of small–scale
electricity consumers with respect to peak reduction, an outcome highly desirable
to various stakeholders, and especially DSOs. Therefore, one must identify the
individuals responsible for the power peak, and try to shift their consumption
from the peak time to other timeslots. One way of achieving the shift would
be by providing appropriate incentives for shifting activities out of the specific
(peak-related) timeslots, either in the form of bonus or penalty, or in a more
holistic manner, in the form of Time-Of-Use (TOU) pricing schemes.

In such a setting, we can pose the problem of CSN construction and behavior
manipulation as a constraint satisfaction problem and more specifically as a
graph coloring problem [Kearns et al.(2006)]. The goal is to shift the “peak-
related” consumption patterns of the CAs that exhibit similar behavior, i.e. there
is a link between them, around the peak timeslots of the day. The CSN can be
created in practice over an information channel (existence of smart metering
infrastructure); this way the stakeholders can identify the peaks that need to
be resolved and create a social network based on the similarity of CA behavior
around those times.

Since the electric grid is constrained by its topology (transformers installed
in the network), we follow the assumption that the CAs reside under medium-
to-low voltage transformers and we focus on a specific branch of the grid (CAs
under the same transformer).

When a CA decides to join a CSN, the node representing the CA is linked
to one or more of best “matches”. To do so, they can assign to a 3rd party
mediator the task of making a list of all candidates and evaluating them with
respect to certain preferences under specific similarity (or dissimilarity) criteria.
For example the mediator could be an application in an existing social network.

Each CA has a number of modeling properties that can be used in the “match-
making” and behavior modeling processes. These are:

1. Consumer Type (CT): In our case there are eight different types of consumers
categorized based on demographics: Bachelor, Elderly person, Elderly couple,
Two students, Couple, Two working persons, Couple with a baby, Family
with four members 6.

2. Consumer Load curve (CL): A vector denoting the load curve footprint of
the CA on an average day (Figure 1) per quarter of the hour (96 values in
total).

3. Response Action (RA): A pre-specified action set (without loss of generality)
that a CA can perform when given an incentive. The available action are:

6 Data were retrieved from the TSO in Cyprus - http://www.dsm.org.cy



(a) shift activity 30’ before peak time (30B)
(b) shift activity 15’ before peak time (15B)
(c) no shift (NS)
(d) shift activity 15’ after peak time (15A)
(e) shift activity 30’ before peak time (30A)

4. Preferred Action (PA): This attribute denotes whether the agent is likely to
perform the shifting before or after the peak time. Based on their PA, CAs
may select not to respond as requested.

5. Acceptance (AC): Whether the CA has accepted to be part of the CSN
construction or not.

Other attributes that could be used to perform the matchmaking are:

1. Trust (TR): Denotes the degree of whether a user can be trusted or whether
we don’t have sufficient data.

2. Environmental awareness (EA): Describes the degree of environmental aware-
ness of the CA.

3. Savings (SV): Describes the savings policy of the CA.
4. Influence (IF): Describes the influence the user has to other users. In terms

of social media examples could be the number of followers in Twitter, the
Klout score7, the number of friends in Facebook or RSS subscribers.

5. Prosperity (PT): The financial status of the CA.
6. Uptake (UT): The degree by which a CA is willing to uptake new technolo-

gies.

With respect to the modeling properties of a CA, matching preference may
be established is various ways. Table 1 illustrates our approach, where with ↓
we define preferences that the smaller their value is, the more preferable it is for
the corresponding CA, while with ↑ we define preferences that the greater their
value is, the more preferable it is for the corresponding CA.

Table 1. Preferences for choosing the best “matching” CAn for CA1.

Attribute Impact Formula

Consumption Proximity Metric (CPM) ↓ euclidean(CL(CA1), CL(CAn))

Physical Proximity Metric (PhPM) ↓ tanh(euclidean(CA1, CAn))

Trustworthiness Metric (TM) ↓ TR(CAn)

Influence Metric (IM) ↑ IF (CAn)

Prosperity Proximity Metric (PrPM) ↓ |PT (CA1)− PT (CAn)|
Savings Proximity Metric (SPM) ↓ |SV (CA1)− SV (CAn)|

Acceptance Proximity Metric (APM) ↓ |AC(CA1)−AC(CAn)|
Environmental Awareness Metric (EAM) ↑ EA(CA1)

7 http://www.klout.com
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Fig. 1. A typical load curve footprint of a consumer agent.

The CSN construction follows the approach of preferential attachment: each
CA is connected with another CA based on how the one ranks the other with
respect to a Preference Metric (PM) and on the number of links the CA is
allowed to have. One May use a preference metric of the form:

PM = w1 ∗ CPM + w2 ∗ PhPM

+
w3 ∗ TM ∗ IM + w4 ∗ SPM ∗ PrPM

EAM
+ w5 ∗APM (1)

Various networks structures can be constructed depending the contribution
of each of the properties in the matching preference of one node towards the
others [Chatzidimitriou et al.(2013)] (Figure 2). The weights can be determined
based on experts opinion or fomr historical data. In addition, some properties
contribute to whether a CA will shift activities or not or whether a CA is willing
to participate in the overall CSN creation or not.

Further advancing work presented in [Chatzidimitriou et al.(2013)], we mainly
focus on the properties of consumer load, response action and preferred action
and display how distributed decision making can be applied over the network in
order to achieve the goal of peak reduction. A new metric PM is defined (Equa-
tion 2), which calculates preference based on consumption proximity at the peak
times and on preferred action proximity, with n denoting the nth peak timeslot



Fig. 2. CSN with weights, w ∈ {1, 1, 1, 1, 1} and 1 connection initiating per CA.

and euclidean denoting the Euclidean distance between the consumption load
values at peak times.

PM =
∑

wn ∗ euclidean(CLn
1 , CLn

2 ) + wn+1 ∗ xnor(PA1, PA2) (2)

Using this preference metric function we also want to add constraints be-
tween CAs that have similar loads around peak times in order to assign them
with different incentives and, thus spread the peak loads evenly across the peak
timeslot. All variables are normalized in the [0,1] interval. The xnor function
outputs 0 if the preference action is different from what is requested and 1 if
it is the same. This way it is possible to produce clusters of greater variety in
preferred actions.

Obviously, one may define a different PM function given the problem at
hand, based on the modeling approach followed; nevertheless, Equation 2 can
be considered adequate for the proof of concept for CSNs, as discussed in the



context of this paper. Algorithm 1 presents the code for structuring the CSN
and for uptaking the appropriate incentives.

Algorithm 1 CSN construction and application algorithm.

1: {CSN construction}
2: for all CAs do
3: if CAi is participating then
4: for all Other CAs participating do
5: values[j]← PM(CAi, CAj)
6: end for
7: Create links between CAi and the k most preferable CAs.
8: end if
9: end for

10: {CSN “coloring”}
11: while Links with different actions exist or Maximum iterations

reached do
12: for all Links between different actions do
13: for all CAs do
14: if CAi is participating then
15: if CAi has the same incentive as neighbor then
16: Actioni ← random(RA)
17: end if
18: end if
19: end for
20: end for
21: end while
22: {CSN application}
23: for all CAs do
24: if CAi is participating then
25: if PAi same direction as Actioni then
26: if Actioni = 30B then
27: Shift consumption 30’ before peak time
28: end if
29: if Actioni = 15B then
30: Shift consumption 15’ before peak time
31: end if
32: if Actioni = NS then
33: Make no shift
34: end if
35: if Actioni = 15A then
36: Shift consumption 15’ after peak time
37: end if
38: if Actioni = 30A then
39: Shift consumption 30’ after peak time
40: end if
41: end if
42: end if
43: end for



4 Experiments and Discussion

The agent simulation system has been implemented in Netlogo [Wilensky(1999)],
an agent-based parallel modeling and simulation environment developed by the
Center for Connected Learning and Computer-based modeling of the Northwest-
ern University.

4.1 Constructing CSNs based on preferential attachment

From a power systems perspective, we assume that the entire population is
located under the same medium-low transformer so that they are no electricity
distribution constraints in our simulation. In all the experiments performed, we
assume a population of 192 CAs, uniformly distributed to the eight consumer
types.

Figures 3 and 4 displays the constructed CSNs for two and five allowed con-
nections per CA respectively. Table 2 presents the results of the distributed opti-
mization algorithm with the use of CSNs. Two types of CSNs were constructed,
one where preferential attachment was used using the preference metric func-
tion (PM) and one where a random network was created (RN). In the random
network edges were added randomly and not through some preference metric.

Fig. 3. CSN with two allowed connections per CA.



Fig. 4. CSN with five allowed connections per CA.

Figure 5 depicts the peak reduction when 100% of CAs join the CSN and
they are allowed to have 5 links. No substantial benefits were found with more
than 5 links.
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Fig. 5. The final curve (dotted line) of the population load curve after the incentives
are applied. The curve is a snapshot of one of the 100 runs of the experiment.



Table 2. Peak reduction percentages (PRPs) are reported for the two identified peaks
using CSNs for different acceptance percentages (AP), connections allowed (CA) and
construction type (PM and RN). For each of the experiments (#) 100 runs of the
algorithm where made and the averages are reported.

# AP (%) CA PM PRP 1 (%) PM PRP 2 (%) RN PRP 1 (%) RN PRP 2 (%)

1 25 1 2.54 7.89 3.38 10.80

2 25 2 2.88 9.02 3.89 12.25

3 25 3 3.63 11.01 3.78 11.75

4 25 4 4.12 12.99 3.67 11.44

5 25 5 4.06 12.39 3.85 11.74

6 50 1 5.00 15.50 6.03 18.65

7 50 2 5.87 17.63 8.01 24.94

8 50 3 6.8 21.00 7.95 24.34

9 50 4 8.01 24.30 7.9 24.21

10 50 5 8.34 26.07 7.73 23.67

11 75 1 7.3 22.72 8.22 25.42

12 75 2 8.52 26.05 11.42 34.84

13 75 3 10.18 31.42 12.01 37.68

14 75 4 12.11 37.19 11.90 37.19

15 75 5 12.31 37.93 11.74 36.08

16 100 1 9.82 30.63 10.6 32.20

17 100 2 11.19 34.66 14.00 43.39

18 100 3 13.25 41.08 16.61 49.80

19 100 4 15.81 48.09 16.25 49.29

20 100 5 16.47 49.94 15.84 48.42

Table 3 provides the results when random incentives are given to a CA with-
out the existence of any CSN.

Table 3. Reduction percentage of the two peaks with random incentives. For each
experiment (#) 100 runs where made.

# Acceptance (%) Peak 1 reduction (%) Peak 2 reduction (%)

1 25 2.15 6.95

2 50 4.30 13.02

3 75 6.68 20.80

4 100 8.87 27.27



From observing the results, it is evident that when users coordinate with the
help of their peers, better performance can be achieved than in the case where
random incentives are given. Additionally, as more connections are available for
the CAs, the CAs can better coordinate their actions and achieve higher gains.
Last but not least, when the CSN with five allowed connections is constructed
(PM type CSNs), results are much better than when a random network is con-
structed (RN type CSNs).

5 Conclusions and future work

Summarizing, the deployed agent-based simulation system aims at providing a
tool for modeling consumer agents with respect of forming CSNs for upgrading
their role and market power from small-scale electricity consumers into impor-
tant stakeholders. This is performed through bottom-up modeling, where the
agents, through simple rules, create complex structures with emergent behavior.
This preliminary analysis for CSN formation in the area of consumer energy
systems illustrates obvious potential benefits.

Future goals include more realistic energy and social modelling for CAs. With
the incorporation of more elaborate demand-side mechanisms, we will be able to
study demand-response scenarios and their effect on the power system through
the use of CSNs.
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