
QualBoa: Reusability-aware Recommendations of
Source Code Components

Themistoklis
Diamantopoulos

thdiaman@issel.ee.auth.gr

Klearchos
Thomopoulos

kleathom@ece.auth.gr

Andreas
Symeonidis

asymeon@eng.auth.gr
Electrical and Computer Engineering Dept.

Aristotle University of Thessaloniki
Thessaloniki, Greece

ABSTRACT
Contemporary software development processes involve find-
ing reusable software components from online repositories
and integrating them to the source code, both to reduce de-
velopment time and to ensure that the final software project
is of high quality. Although several systems have been de-
signed to automate this procedure by recommending compo-
nents that cover the desired functionality, the reusability of
these components is usually not assessed by these systems.
In this work, we present QualBoa, a recommendation system
for source code components that covers both the functional
and the quality aspects of software component reuse. Upon
retrieving components, QualBoa provides a ranking that in-
volves not only functional matching to the query, but also a
reusability score based on configurable thresholds of source
code metrics. The evaluation of QualBoa indicates that it
can be effective for recommending reusable source code.

Keywords
Recommendation Systems in Software Engineering; Source
Code Metrics; Code Reuse

1. INTRODUCTION
Lately, the rise of the open source community and the in-

troduction of online source code repositories have provided
numerous exploitation possibilities in the context of software
reuse. Developers often rely on finding reusable source code
components, both to reduce the time spent to develop them
and to ensure that the resulting software is of high quality
(in terms of reliability and functionality delivered). Online
source code repositories and question answering communi-
ties, such as GitHub or Stack Overflow, have facilitated the
task of finding suitable (with respect to a developer query)
source code. Furthermore, several specialized Code Search
Engines (CSEs) and indexing systems, such as Boa [1], offer
advanced syntax-aware capabilities as well as other types of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2903492

information about the source code, including e.g. documen-
tation, license details, etc.

However, exploiting this information effectively is not triv-
ial; the developer usually has to create an appropriate query
for a component, manually refine the returned source code,
and possibly adapt the component to the system being de-
veloped. The idea of automating these tasks has led to the
introduction of source code recommendation systems, lying
in the area of Recommendation Systems in Software Engi-
neering (RSSEs) [2,3]. Most of these efforts have focused on
the functional aspects of component reuse, applying match-
making mechanisms to provide functionally adequate soft-
ware components to the developer. Certain systems have
also employed test cases to ensure that the desired func-
tionality is fulfilled [2], while others have even implemented
simple source code transformations in order to integrate the
components directly into the source code of the developer [3].

Although these systems cover the functional criteria posed
by the developer, they do not offer any assurance concern-
ing the reusability of the source code. Reusing retrieved code
can be a risky practice, considering no quality expert has as-
sessed it. A possible solution is to exploit the power of the
developers corpus, as performed by Bing Developer Assis-
tant [3], which promotes components that have been chosen
by other developers. However, crowdsourcing solutions are
not always accurate, considering that developers may re-
quire specialized components with specific quality criteria.
Primal efforts towards this direction can be traced in Code
Conjurer [2], which selects the less complex out of all func-
tionally equivalent components, determined by the lines of
code. However, defining the criteria for the complexity and
generally for the reusability of a component, is not trivial.

In this work, we present an RSSE that covers both the
functional and the quality aspects of component reuse. Our
system is called QualBoa since it harnesses the power of
Boa [1], a sophisticated indexing service, to locate useful
software components and compute quality metrics. Upon
downloading the source code components from GitHub, Qual-
Boa generates for each component both a functional score
and a reusability index based on quality metrics. Further-
more, the generated reusability index is configurable to allow
the involvement of quality experts.

The rest of this paper is organized as follows. Section 2
presents the architecture of QualBoa and illustrates its func-
tionality. Section 3 evaluates our system in a component
reuse context. Finally, Section 4 summarizes our contribu-
tions and provides insight for further research.

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 488

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 488

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 488

Quality
metrics

Functional
Scorer

Reusability
Scorer

Parser

Boa
DownloaderClient

GitHub
Downloader

Result
ASTs

Query
AST

Result
files

Query for
componentsQuery

Download
source code

Functional
score

Reusability
score

Result
list

10 9

6

21

8

57

3

4

Figure 1: The architecture of QualBoa

2. QUALITY CODE RECOMMENDATIONS

2.1 High-Level Overview of QualBoa
The overall architecture of QualBoa is shown in Figure 1.

This architecture is agnostic, since it can support any lan-
guage and integrate with various code hosting services. In
this work, we employ Boa and GitHub as the code hosting
services, and implement the language-specific components
for the Java programming language. Initially, the developer
provides a query in the form of a signature. A signature is
similar to a Java interface which comprises all methods of
the desired class component. An example signature for a
“Stack” component is shown in Figure 2.

public class Stack{
public void push(Object element);
public Object pop();

}

Figure 2: Example signature for a class “Stack”with
two methods, “push” and “pop”

The signature is given as input to the Parser. The Parser,
which is implemented using Eclipse JDT1, extracts the Ab-
stract Syntax Tree (AST) of any given Java file. Upon ex-
tracting the AST for the query, the Boa Downloader parses
it and constructs a Boa query for relevant components, in-
cluding also calculations for quality metrics. The query is
submitted to the Boa engine [1], and the response is a list
of paths to Java files and the values of quality metrics for
these files. The result list is given to the GitHub Downloader
which downloads the files from GitHub. The files are then
given to the Parser so that their ASTs are extracted.

The ASTs of the downloaded files are further processed
by the Functional Scorer, which creates the functional score
for each result. The Functional Score of a result file de-
notes whether the file fulfills the functionality posed by the
query of the developer. The Reusability Scorer receives as
input the metrics for the result files and generates a reusabil-
ity score, denoting the extent to which each file is reusable.
Finally, the developer (Client) is provided with the scores
for all files, and the results are given ranked according to
the Functional Score for each file. The procedures of down-
loading components and constructing their functional and
quality scores are described in the following subsections.

1http://www.eclipse.org/jdt/

2.2 Downloading Source Code and Metrics
Upon extracting the elements of the query, including class

name, method names and types, QualBoa finds useful soft-
ware components and computes their metrics using Boa [1].
A simplified version of the query is shown in Figure 3.

visit(p, visitor {
...
before node: Declaration −> {

if (match(class name, node.name)) {
foreach (i: int; node.methods[i])

visit(node.methods[i]);
}

}
before node: Method −> {

for (i := 0; i < len(method names); i++) {
if (match(method names[i], node.name)) {

match names[i] = true;
if (method types[i] == node.return type.name)

match types[i] = true;
}

}
}
...
after node: Declaration −> {

foreach (i: int; def(node.fields[i])) {
foreach (j: int; def(node.fields[i].modifiers[j])) {

if (node.fields[i].modifiers[j].visibility ==
Visibility.PUBLIC)

num public fields++;
}

}
...

}
});

Figure 3: Boa query for components and metrics

The query follows the visitor pattern to traverse the ASTs
of the Java files in Boa. At first, the type declarations of
all files are visited to determine whether they match the
given class name (class name). The methods of matched files
are further visited to check whether their names and types
match those of the query (method names and method types).
The number of matched elements is aggregated to rank the
results and a list with the first 150 results is given to GitHub
Downloader, which retrieves the files from the GitHub API.

489489489

Table 1: The reusability model of QualBoa

Quality Extreme Relevant Quality Characteristics
Metrics Values Modularity Maintainability Usability Understandability Reusability

Average Lines of Code per Method > 30 × × ×
Average Cyclomatic Complexity > 8 × × ×
Coupling Between Objects > 20 × × ×
Lack of Cohesion in Methods > 20 × ×
Average Block Depth > 3 × ×
Efferent Couplings > 20 × × ×
Number of Public Fields > 10 × × ×
Number of Public Methods > 30 × × ×

#Metrics per Quality Characteristic: 3 4 4 3 8

The second part of the query involves computing source
code metrics for the retrieved files. Figure 3 depicts the code
for computing the number of public fields. We extend the
query to compute the metrics of Table 1 (see Section 2.4).

2.3 Mining Source Code Components
The Functional Scorer computes the similarity between

each of the ASTs of the results with the AST of the query, in
order to rank the results according to the functional desider-
ata of the developer. Initially, both the query and each ex-
amined result file is represented as a list. The list of elements
for a result file is defined in the following equation:

result = [name,method1,method2, . . . ,methodn] (1)

where name is the name of the class and methodi is a sublist
of the i-th method of the class, out of n methods in total.
The sublist of a method is defined as:

method = [name, type, param1, param2, . . . , paramm] (2)

where name is the name of the method, type is its return
type, and paramj is the type of its j-th, out of m parameters
in total. Using equations (1) and (2), we can represent each
result, as well as the query, as a nested list structure.

Comparing a query to a result requires computing a sim-
ilarity score between the two corresponding lists, which in
turn implies computing the score between each pair of meth-
ods. Note that computing the maximum score between two
lists of methods requires finding the score of each pair of
methods and selecting the highest scoring pairs. Following
the approach of the stable marriage problem, this is accom-
plished by ordering the pairs according to their similarity
and selecting them one-by-one off the top, noticing whether
a method has already been matched. The same process is
also used for matching the parameters between method lists.

Class names, method names and types, as well as parame-
ter types are matched using a token set similarity approach.
Since in Java identifiers follow the camelCase convention, we
first split each string into tokens and compute the Jaccard
index for the two token sets. Given two sets, the Jaccard
index is defined as the size of their intersection divided by
the size of their union. Finally, the similarity between two
lists or vectors ~A and ~B (either in method or in class/result
level) is computed using the Tanimoto coefficient of the vec-

tors ~A · ~B/(| ~A|2 + | ~B|2 − ~A · ~B), where | ~A| and | ~B| are the

sizes of vectors ~A and ~B, and ~A · ~B is their inner product.
For instance, given the component lists [Stack, [push, void,

Object], [pop,Object]] and [IntStack, [pushObject, void, int],

[popObject, int]], the similarity between the method pairs for
the “push” functionality is computed as follows:

scorePUSH = Tanimoto([1, 1, 1], (3)

[Jaccard({push}, {push, object}),
Jaccard({void}, {void})
Jaccard({object}, {int})])

= Tanimoto([1, 1, 1], [0.5, 1, 0]) ' 0.545

where the query list is always a list with all elements set to
1, since it constitutes a perfect match. Similarly, the score
for the “pop” functionality is approximately 0.286 and, thus,
the total score for the class is approximately 0.579.

2.4 Recommending Quality Code
Upon constructing a functional score for the components,

QualBoa checks whether each component is suitable for reuse
using source code metrics. Although the problem of measur-
ing the reusability of a component using source code metrics
has been studied extensively [4–7], the choice of metrics is
not trivial; research efforts include employing the C&K met-
rics [5], coupling and cohesion metrics [6], and several other
metrics referring to volume and complexity [4]. However,
the main quality axes that measure whether a component
is reusable are common. In accordance with the definitions
of different quality characteristics [8] and the current state-
of-the-art [5, 7, 9], reusability spans across the modularity,
usability, maintainability, and understandability concepts.

Our reusability model, shown in Table 1, includes 8 met-
rics that refer to one or more of these characteristics. These
metrics cover several aspects of a component, including vol-
ume, complexity, coupling, and cohesion. The model is sim-
ple, marking the value of each metric as normal or extreme
according to the thresholds shown in the second column of
Table 1. Each normal value contributes as one quality point
in the relevant characteristics. Reusability includes all 8 val-
ues. Thus, given e.g. a component with extreme values for
2 out of 8 metrics, the reusability score would be 6 out of 8.

Determining appropriate thresholds for quality metrics is
non-trivial, since different types of software may have to
reach specific quality objectives. Thus, QualBoa offers the
ability to configure these thresholds, while their default val-
ues are set according to the current state-of-the-practice, as
defined by current research [10] and widely used static code
analysis tools, such as PMD2 and CodePro AnalytiX3.

2https://pmd.github.io/
3https://developers.google.com/java-dev-tools/codepro/

490490490

3. EVALUATION
The source code of QualBoa and all data required to re-

produce our findings are available in the repository:

https://github.com/AuthEceSoftEng/QualBoa

We evaluated QualBoa in the dataset of [2], which contains
7 queries for different types of components, shown in the
first column of Table 2. For each query, we examine the first
30 results of QualBoa, and mark each result as useful or not
useful, considering a result as useful if integrating it in the
developer’s code would require minimal or no effort. In other
words, useful components are the ones that are understand-
able and at the same time cover the required functionality.
Benchmarking and annotation were performed separately by
the first and the second author respectively.

Given these marked results, we check the number of rele-
vant results retrieved for each query, and compute also the
average precision for the result rankings. The average pre-
cision was considered as the most appropriate metric since
it covers not only the relevance of the results but also and
more importantly their ranking. We further assess the files
using the reusability model of QualBoa and, upon normal-
izing to percentages, report the average reusability score for
the useful/relevant results of each query. Our evaluation is
summarized in Table 2.

Table 2: Evaluation results of QualBoa

#Relevant Average Reusability
Query Results Precision Score

Calculator 18 59.27% 70.83%
ComplexNumber 15 86.18% 82.76%
Matrix 10 95.88% 88.68%
MortgageCalculator 7 100.00% 87.17%
ShoppingCart 13 100.00% 100.00%
Spreadsheet 2 100.00% 88.54%
Stack 22 77.59% 100.00%

Average 12.43 88.42% 88.28%

Concerning the number of relevant results, QualBoa seems
to be quite effective. In specific, our RSSE successfully re-
trieves at least 10 useful results for 5 out of 7 queries. Ad-
ditionally, almost all queries have average precision scores
higher than 75%, indicating that the results are also ranked
correctly. This is particularly obvious in cases where the
number of retrieved results is limited, such as the Mortgage-
Calculator or the Spreadsheet component. The perfect av-
erage precision scores indicate that the relevant results for
these queries are placed on the top of the ranking.

The results of our system are also highly reusable, as in-
dicated by the reusability score for each query. In 5 out of 7
queries, the average reusability score of the relevant results is
quite near or higher than 87.5%, indicating that on average
the components do not surpass more than 1 of the thresholds
defined in Table 1, so they have a reusability score of at least
7 out of 8. The reusability score is also related to the over-
all complexity of the queried component. In specific, data
structure components such as Stack or ShoppingCart are not
prone to severe quality issues and thus have perfect scores.
On the other hand, complex components such as Calculator
or ComplexNumber may contain methods that inter-operate,
thus their reusability scores are expected to be lower.

4. CONCLUSION
Although several systems have been developed for finding

source code components, the assessment of the reusability
of these components has not been adequately addressed. In
this work, we presented QualBoa, a system that incorporates
functional and quality information to recommend compo-
nents that are not only functionally equivalent to the query
of the developer but also reusable. Our evaluation indicates
that QualBoa is effective for retrieving reusable results.

Further work lies in several directions. The reusability
model can be refined to comply with the specifics of different
component categories. It can also be automatically adapted
so that the recommended components have the same quality
characteristics with the source code of the developer.

5. ACKNOWLEDGMENTS
Parts of this work have been supported by the FP7 Col-

laborative Project S-CASE (Grant Agreement No 610717),
funded by the European Commission.

6. REFERENCES
[1] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and

Tien N. Nguyen. Boa: A language and infrastructure
for analyzing ultra-large-scale software repositories. In
35th International Conference on Software
Engineering, ICSE 2013, pages 422–431, May 2013.

[2] Oliver Hummel, Werner Janjic, and Colin Atkinson.
Code Conjurer: Pulling Reusable Software out of Thin
Air. IEEE Softw., 25(5):45–52, September 2008.

[3] Yi Wei, Nirupama Chandrasekaran, Sumit Gulwani,
and Youssef Hamadi. Building bing developer
assistant. Technical Report MSR-TR-2015-36,
Microsoft Research, May 2015.

[4] Gianluigi Caldiera and Victor R. Basili. Identifying
and qualifying reusable software components.
Computer, 24(2):61–70, February 1991.

[5] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson,
and Giancarlo Succi. Does refactoring improve
reusability? In Proceedings of the 9th International
Conference on Reuse of Off-the-Shelf Components,
ICSR’06, pages 287–297, 2006.

[6] Gui Gui and Paul D. Scott. Coupling and cohesion
measures for evaluation of component reusability. In
Proceedings of the 2006 International Workshop on
Mining Software Repositories, MSR ’06, pages 18–21,
New York, NY, USA, 2006. ACM.

[7] Jeffrey S. Poulin. Measuring software reusability. In
Proceedings of the Third International Conference on
Software Reuse: Advances in Software Reusability,
pages 126–138, Nov 1994.

[8] Diomidis Spinellis. Code Quality: The Open Source
Perspective (Effective Software Development Series).
Addison-Wesley Professional, 2006.

[9] Fatma Dandashi. A method for assessing the
reusability of object-oriented code using a validated
set of automated measurements. In Proceedings of the
2002 ACM Symposium on Applied Computing, SAC
’02, pages 997–1003, New York, NY, USA, 2002. ACM.

[10] Kecia A. M. Ferreira, Mariza A. S. Bigonha,
Roberto S. Bigonha, Luiz F. O. Mendes, and Heitor C.
Almeida. Identifying thresholds for object-oriented
software metrics. J. Syst. Softw., 85(2):244–257, 2012.

491491491

