
Designing Robust Strategies for Continuous

Trading in Contemporary Power Markets

Themistoklis G. Diamantopoulos,
Andreas L. Symeonidis, and Anthony C. Chrysopoulos

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki,
Informatics and Telematics Institute, CERTH, Thessaloniki, Greece

{thdiaman,asymeon,achryso}@issel.ee.auth.gr

Abstract. In contemporary energy markets participants interact with
each other via brokers that are responsible for the proper energy flow
to and from their clients (usually in the form of long-term or short-
term contracts). Power TAC is a realistic simulation of a real-life energy
market, aiming towards providing a better understanding and modeling
of modern energy markets, while boosting research on innovative trad-
ing strategies. Power TAC models brokers as software agents, competing
against each other in Double Auction environments, in order to increase
their client base and market share. Current work discusses such a bro-
ker agent architecture, striving to maximize his own profit. Within the
context of our analysis, Double Auction markets are treated as microeco-
nomic systems and, based on state-of-the-art price formation strategies,
the following policies are designed: an adaptive price formation policy,
a policy for forecasting energy consumption that employs Time Series
Analysis primitives, and two shout update policies, a rule-based policy
that acts rather hastily, and one based on Fuzzy Logic. The results are
quite encouraging and will certainly call for future research.

Keywords: Double Auctions, Trading Agent Competition (TAC), En-
ergy Market, Fuzzy Logic, Time Series Analysis.

1 Introduction

A Double Auction (DA) is an auction where multiple sellers and buyers par-
ticipate, placing asks/bids on the product(s) they want to sell/buy, trying to
maximize their profit. DAs are a particularly interesting case of dynamics for
Computer and Economics scientists, since product prices and demand/response
may fluctuate in an unpredictable manner, thus giving room for research.

Power TAC, initially launched in 2011 [8], provides a powerful competition
benchmark of applying DAs’ theory to real-life problems. It simulates a modern
energy market, where producer, consumer and prosumer needs of electrical power
are modeled. Competing agents act as brokers, procuring energy from producers
and selling it to consumers in order to acquire the maximum possible profit. The
profit, however, does not depend only on monetary units, but also on factors
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such as the agent’s fees or its bias towards renewable energy sources [8]. In the
highly dynamic environment of Power TAC agents face the following challenges:

– Create tariffs to attract customers and create a portfolio of producers and
consumers of Electric Energy, according to the current state of the Market.

– Determine the amount of energy to be procured based on the prediction of
customers’ power load consumption, since any imbalance of the power load
is penalized.

– Maximize their profit either by attracting new customers, or improving terms
of the existing contracts.

Thus, broker agents have to be equipped with innovative trading and decision
making strategies, in order to optimize agent performance. To this end, we have
designed agent Mertacor. The rest of the paper is organized as follows: Section 2
provides a state-of-the-art review on price formation strategies through the prism
of DAs, whereas Section 3 discusses the key modeling elements of Power TAC.
The Mertacor architecture is presented in Section 4, while Section 5 presents the
experiments conducted. Section 6 provides useful conclusive remarks, directions
for future research and concludes the paper.

2 Double Auctions

Double Auctions are thoroughly described using microeconomics theory, where a
product’s price and quantity are determined by the supply and demand for that
product [9,6]. In a given exchange, each participant has a limit price (aka private
value) denoting the maximum or minimum price one is willing to offer/accept,
being a buyer/seller respectively. In DAs, product price is inversely proportional
to the demand and proportional to product supply. The intersection point of
the supply and demand curves is called competitive equilibrium and is a crucial
factor dictating whether shouts are successful or not.

This process is identified as market clearing and its timing is actually one of
the main criteria that differentiates DAs into various types. Although there are
several types, they can typically be divided into two main lines of research: the
Continuous Double Auctions (CDAs) and the Clearing House Double Auctions
(CH). The latter provide an interesting research framework, mainly due to their
high market efficiency. Nevertheless, the complexity of CDAs attracts even more
researchers interested not only in designing such markets, but also in developing
antagonistic price formation policies.

2.1 A Taxonomy of Strategies

Although properly designing a market is an interesting challenge, no market is
complete without traders. A trading strategy may have several features depend-
ing on the type of the market it is designed for. Strategies may be designed
to converge to some equilibrium, mimic human behavior or simply gain profit.
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In any case though, the core feature of a strategy is its price formation technique,
which is yet an open issue in DAs. This section discusses a taxonomy of price
formation techniques, while commenting on the benefits of each approach.

Despite extensive research has been realized on this field, no concrete taxon-
omy has been established yet, mainly due to the complexity of the techniques
involved. The classification proposed within the context of this paper is inspired
by the model of Rust et al. [11] and is formed along two axes: adaptiveness and
predictivity.

A strategy is considered adaptive if it employs data from previous auction
rounds in order to formulate the next shout price. By contrast, a non-adaptive
strategy is based only on current information, thus achieving simplicity. Strate-
gies employing Reinforcement Learning primitives cannot be classified to either
of the above categories, since they usually base decisions upon considering only
their own past. Thus, they may be abusively named self-adaptive.

An agent may be either predictive or non-predictive. A non-predictive agent
exploits only present and/or past data to form its next shout. In contrast, a pre-
dictive agent tries to construct a future state of the market in order to transact
in an intelligent manner. To achieve this, it also requires past data, thus pre-
dictive strategies are usually adaptive. Finally, non-adaptive and self-adaptive
strategies can be regarded as non-predictive, since the former don’t make use of
past data, while the latter may only construct a model of their own future state,
ignoring future states of other agents. Based on the above analysis, the following
section discusses the most popular price formation strategies.

2.2 Discussion on State-of-the-Art Price Formation Strategies

Non-adaptive Strategies. The main representative of this category is the Zero
Intelligence (ZI) strategy, authored by Gode and Sunder [6]. A ZI agent actually
submits offers randomly, either freely (ZI Unconstrained – ZI-U ) or within limit
values (ZI Constrained – ZI-C ). Though ZI may seem as a deprecated strategy,
its contribution is substantial in the design of more advanced strategies, since it
provides a benchmark against random guessing.

The KAPLAN strategy [10], is a “sniping” strategy, in the sense that the
agent makes a move towards the end of the current trading period. Although
such a simple strategy has had success in the Santa Fe DAs tournament[4], the
KAPLAN strategy cannot be applied to competitions like Power TAC, which do
not reveal the duration of the rounds.

Adaptive Strategies. Most state-of-the-art strategies are adaptive. Predictive
strategies, like Zero Intelligence Plus (ZIP), also model future states [2]. A ZIP
agent uses a learning rule (delta rule) to update its profit margin. It decides
whether the latter is increased or decreased based on the type (bid or ask), as
well as the success (or not) of the last shout.

An interesting line of research is the one followed by Vytelingum et al. [12],
resulting in the Adaptive Aggressiveness (AA) strategy. An AA agent initially
makes a prediction of the market’s equilibrium based on previous shouts, and
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then computes the price which it should pursue (target price). The agent uses a
ZIP-like algorithm to determine the trend of its degree of aggressiveness, which
is used to update the price of the next shout.

On the other hand, non-predictive strategies seem to have a rather straight-
forward policy on deciding their next move. However, this does not mean that
they are less efficient or complex. Strategies like Gjerstad-Dickhaut (GD) achieve
good results [5]. A GD agent tries to maximize its expected surplus, which is de-
fined by the agent’s belief function. This function is updated according to the
success rate of a number of past shouts, i.e. the memory of the agent.

Additionally, He et al. suggest a Fuzzy Logic based (FL) strategy [7]. A FL
agent computes the reference price, i.e. the mean price of the last κ transactions
(since the agent has memory), and bases its accepting offer strategy on a com-
parison to current outstanding shouts. The proximity of the reference price to
the shouts is dissolved using fuzzy sets. The agent also has a learning rate, which
is updated using fuzzy rules, in order to adjust its will to transact according to
the frequency of its transactions.

Self-adaptive Strategies. The main advantage of Reinforcement Learning
strategies is their utter independence from the other agents’ actions, and some-
times even from the market. Although this may seem ineffective, techniques such
as Roth-Erev (RE) achieve significant performance, especially in sealed DAs,
where the amount of information that is given to the agents is limited [3]. The
RE agent has been designed to mimic human behavior. The agent’s propensity
of making a move is updated at each round through an experience function,
which is a reflection of the agent’s satisfaction (or disappointment) concerning
the considered move. The optimum move is selected using a choice probability
function.

Finally, the Q strategy is an interesting expansion of the Q-learning technique
that employs an e-greedy policy [1]. This way, the Q agent either explores the
environment or decides using its knowledge up to that point. The agent updates
its pricing policy based on which action has been the most profitable in its recent
history.

3 The Power TAC Environment

The broker agents’ main challenge is the Tariff Market. It contains all households,
low energy consumers, and small producers. Agents submit their tariffs (asks or
bids) to the market, trying to acquire as large market share as possible, while
keeping their prices within an affordable level. As far as the customers’ contract
choices are concerned, they are based on the concept of tariff utility. A customer’s
tariff utility for a given tariff i is given in equation (1):

ui = −(cu + cf ) · acost − ei · aenergy − ri · arisk − Ii · ainertia (1)

where the parameters acost, aenergy, arisk and ainertia define the weights given
by the customer to costs (either variable (cu) or fixed (cf )), energy sources ei
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(e.g. renewable sources), any risks ri (e.g. dynamic contracts), and the customer’s
will to remain idle Ii. This way the customer computes the tariff utility of a
subset of tariffs offered. Instead of choosing the tariff with the highest utility,
the customer selects a tariff in a probabilistic way (see [8]). Agents may also
trade energy amongst each other in the Wholesale Market, or with large-scale
consumers directly, through requests for quotes (RFQ), in order to balance their
portfolio.

Other entities of Power TAC include the Distribution Utility (DU), which
imposes penalty fees when there is an imbalance between broker procured and
consumed energy, the Weather Service, which provides weather forecast data to
brokers, and the Accounting Service, which keeps track of all agents’ transactions
and provides them with portfolio information.

According to Power TAC specifications, all customers are initially bound to
a contract with a default agent, which is not meant to be competent. Upon
initialization, the number of timeslots is determined but not reported to the
agents. Brokers can submit tariffs during each timeslot, nevertheless there is a
tariff publication fee and a maximum number of shouts per agent to avoid market
“spamming”.

Given that focus of the current work is on the price policy, only variable rate
tariffs are taken into account. Thus, (1) is dealt with as (2):

ui = −cu · acost (2)

given cu is computed as the mean energy cost for the consumption during k
randomly selected past days and acost is a parameter defining the weight given
to that cost.

Thereby, a comprehensive DA environment is created, in the sense that bro-
kers have to buy energy from the producers and sell it to the consumers, aiming
to make profit. However, the environment is still too complex to be treated as
a simple price formation problem. With respect to the Power TAC challenges
discussed, our broker’s objectives in the Tariff Market are to:

– Form the price of the next bid (or ask)
– Update (or not) its current shouts or decide to submit new shouts
– Determine the amount of energy to be requested by its producers.

4 Agent Mertacor Design

In accordance with the above mentioned objectives, Mertacor, our agent-broker
comprises of three modules defining three policies: a price formation policy, a
tariff update policy, and an energy prediction policy. These policies provide the
necessary input to the core agent mechanism that integrates decisions and defines
the final agent strategy, communicated to the Power TAC server.
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4.1 Price Formation Policy

Vast amount of information is shared to the agents participating in the Tariff
market, thus adaptive strategies should typically be advantageous compared to
non-adaptive and self-adaptive ones. The policy developed aspires to exploit any
available information as optimally as possible.

Initially, the agent uses data from the last transactions to calculate the suc-
cessful price, which is defined as the mean of all successful transactions of the
market and is computed using a moving average method. Considering that the
agent’s memory holds the latest N transactions, the successful price is given by
equation (3):

SP =

∑T
i=T−N+1 wisipi

∑T
i=T−N+1 wisi

(3)

where wi is the weight of shout i with price pi, and si denotes whether the offer
was successful (si = 1) or not (si = 0). Considering transaction T is the most
recent, then wT = 1 and all other weights are updated based on equation (4):

wi−1 = r · wi r ∈ [0, 1] (4)

where r determines the importance given to former shouts by the agent. Equa-
tions (3) and (4) are valid for both bids and asks.

Mertacor also behaves in a predictive manner. A risk factor R determines the
agent’s eagerness to take risks in order to pursue greater profit. R values range
in the interval [−c, c], where c defines the maximum deviation of the final shout
price from the successful price. The success rate of the agent’s M latest shouts
is computed as follows:

k =

∑M
i=1 acceptedShouts(i)

M
(5)

where acceptedShouts(i) returns 1 or 0 if the shout was successful or not respec-
tively. Equation (5) is then normalized to the interval [−c, c]:

k̂ = c · (2k − 1) (6)

Note that the risk factor could be assigned the value of k̂. For example, if the
success rate of the agent’s latest M asks is higher than 50%, then the normalized
k̂ is positive, meaning that the agent should probably take risks by increasing its
shout pricing policy. However, for the sake of experimentation, Mertacor’s risk
factor follows a Gaussian distribution.

In order to avoid extreme adjustments to the final shout price, the distribution
is restricted between intervals, thus it is given by equation (7):

g(x) =
1√
2πσ2

· e
−(x− μ2)

2σ2 g(x) ∈ [−l, l] (7)
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where the distribution limit l is defined as follows:

l = min
{∣
∣k̂ − c

∣
∣,
∣
∣k̂ + c

∣
∣
}

(8)

The distribution’s mean is k̂ and its standard deviation is given by equation (9):

σ =
e− l

3
e ∈ (0,∞) (9)

where e is an experimentation parameter, defining the relationship between σ
and l. Figure 1 illustrates the influence of e to the height of the distribution as
well as its limits. The risk factor is given randomly from the distribution part
denoted from the shaded area of Figure 1. The smaller the parameter e, the more
likely the agent chooses a value closer to the mean of the distribution, while as
the parameter increases, the agent may choose a more risky value.

μ = k̂, e = 1.0, σ = l/3

μ = k̂, e = 0.5, σ = l/6

μ = k̂, e = 2.0, σ = 2l/3

k̂ − l k̂ k̂ + l

0.2l/3

0.4l/3

0.8l/3

Random variable

0

Probability

Fig. 1. Experimentation function of the agent

Finally, if sask is defined to be the agent’s ask limit price, the next ask is given
by equation (10):

ask = max
{
SP · (1 +R), sask

}
(10)

In accordance, let sbid be the agent’s bid limit price, the next bid is calculated
using equation (11):

bid = min
{
SP · (1−R), sbid

}
(11)

The agent’s limit values may be considered fixed. In fact, they only change barely
to avoid stiff situations, where all agents stick to their limit values.

4.2 Tariff Update Policy

A tariff update policy should deal successfully with submitting tariffs to the Tariff
Market, as well as updating already existing ones. Two policies are proposed,
both considering the balance of the broker’s portfolio and the maximum number
of offers permitted.
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Basic Update Policy. Striving for an aggressive policy, the agent submits at
first a new tariff each round it is given the right to. Thus, it could quickly conquer
the market, since the more the tariffs the better the chance of more customers
accepting them. However, the policy’s spontaneity may lead to ineffective tariffs,
since during the first rounds the agent’s price formation policy is not likely to
have converged to optimal shout values.

Determining whether to update an already existing tariff or not is a matter of
the agent’s portfolio. Mertacor compares its portfolio balance with what is called
the balance limit. If Mertacor’s portfolio balance surpasses this limit, then it is pe-
nalized by the DU. Taking the absolute balance limit into account, the Mertacor’s
main strategy for asks is depicted in Figure 2a and for bids in Figure 2b. PBalance
and BLimit stand for portfolio balance and balance limit, respectively.

if (PBalance > BLimit)

if (unsuccessful asks exist)

Update min unsuccessful ask

else

Update min ask

else_if (PBalance < - BLimit)

if (unsuccessful asks exist)

Update max unsuccessful ask

else

Update max ask

(a)

if (PBalance > BLimit)

if (unsuccessful bids exist)

Update min unsuccessful bid

else

Update min bid

else_if (PBalance < - BLimit)

if (unsuccessful bids exist)

Update max unsuccessful bid

else

Update max bids

(b)

Fig. 2. Basic update policy update algorithms for (a) asks and (b) bids

This way Mertacor adapts and actually understands any imbalances between
the number of producers and the number of consumers contracted to it. For
example, when the portfolio balance is greater than the positive balance limit,
the agent has an energy deficit, thus alters its minimum shouts to reduce the
assigned consumers’ and increase the respective producers’ market share.

Changing minimum or maximum shouts provides a neat way to adjust Merta-
cor’s contracts to producers and consumers and, as a result, its portfolio balance.
However, since the Tariff Market is highly competitive, breaking a contract is
rather risky. Thus, Mertacor first attempts to modify any unsuccessful shouts
and, if all offers are accepted, only then does it decide to break successful con-
tracts (the less profitable ones).

Fuzzy Logic Update Policy. In order to provide a more comprehensible way
of defining the values of the metrics that affect the agent’s state, Fuzzy logic
primitives have been employed. In fact, two fuzzy sets are defined: one with
respect to the number of consumers (producers) under contract and one with
respect to the agent’s portfolio balance.
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The first fuzzy set is defined as the number of consumers (producers) who have
a contract with Mertacor. Let B be the number of brokers and C the number
of the current consumers (producers) of the agent, the fuzzy set is shown in
Figure 3.

Similarity

0 C/B C − C/B C

Consumers

1

Fig. 3. Fuzzy set for the consumers of the agent. Producers set is defined in an analo-
gous manner.

Dividing the number of brokers by the number of e.g. the agent’s consumers
provides the number of consumers that the agent should have if they were shared
equally among brokers.

The second fuzzy set, describing the agent’s portfolio balance, is depicted in
Figure 4, where L is the balance limit.

Similarity

mediumlowvery low high very high

−11L/5 −2L −6L/5 −L 0 L 6L/5 2L 11L/5

Portfolio Balance

1

Fig. 4. Fuzzy set for the portfolio balance of the agent

Observing Figure 3 and Figure 4, both fuzzy sets’ values are summed to
1 regardless of the independent variable. Thus, the fuzzy sets are regarded in
a probabilistic manner, using a uniform random distribution from 0 to 1. For
example, as far as the fuzzy set of Figure 3 is concerned, if Mertacor’s customers
are C/2B, they are considered too few. However, if they are C/2 then Mertacor
has a 50% probability for considering them few and the same probability for
believing they are many.

Upon defining the fuzzy sets as well as their use, the policy is analyzed along two
main decisions: submitting new tariffs, and updating existing ones. Considering
the former, Mertacor submits new offers if customers are few, as long as current
offers don’t exceed the maximum allowed number of offers for each agent. If con-
sumers are few, Mertacor submits a new ask and if producers are few, Mertacor
submits a new bid. The agent submits new shouts only if its market share is not
satisfactory, in order to avoid any loss due to tariff submission fees.
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As far as tariff updates are concerned, Mertacor updates its maximum ask if
the balance is low or very low or if consumers are few. If Mertacor’s balance is
high or very high, or if producers are few, then Mertacor updates the minimum
bid. So far, the policy seems rational, yet not optimal. In order to optimize it,
Mertacor also updates the minimum ask if its portfolio balance is very high and
it also updates the maximum bid if it is very low. Figures 5a and 5b depict
Mertacor’s strategy with respect to asks and bids update policy.

if ((PBalance is low or very_low)

or (consumers are few))

if (unsuccessful asks exist)

Update max unsuccessful ask

else

Update max ask

else_if (PBalance is very_high)

if (unsuccessful asks exist)

Update min unsuccessful ask

else

Update min ask

(a)

if ((PBalance is high or very_high)

or (producers are few))

if (unsuccessful bids exist)

Update min unsuccessful bid

else

Update min bid

else_if (PBalance is very_low)

if (unsuccessful bids exist)

Update max unsuccessful bid

else

Update max bid

(b)

Fig. 5. Fuzzy Logic update policy update algorithms for (a) asks and (b) bids

Interpreting Metacor’s update strategy leads to identifying the relation be-
tween the agent’s market share and its respective portfolio balance. When that
balance is low, Mertacor needs to balance the energy deficit by updating the
maximum ask. Thus, Mertacor decreases ask prices in order to increase his con-
sumers’ market share. Mertacor acts in a similar manner when consumers are
few. However, if the portfolio balance is very low then Mertacor not only consid-
ers increasing consumers (Figure 5a) but also decreasing producers (Figure 5b),
in order to fix the portfolio imbalance more efficiently. When Mertacor’s portfolio
balance is high or very high, respective decisions are made.

4.3 Energy Prediction Policy

Through the energy prediction policy Mertacor estimates the amount of energy
needed to cover contracted consumers’ needs during the forthcoming timeslot.
Mertacor receives energy consumption measurements for each timeslot and con-
structs a time series {x1, x2, . . . , xn}, where xi is the total energy consumption
in the market for timeslot i and n is the number of previous timeslots. This
way the problem is transformed to predicting the future value of the series. The
latter is found using exponential smoothing, according to equation (12):

x̂n+1 = a · xn + (1 − a) · x̂n (12)
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where a defines the importance given to every previous value. Equation (12) is
initialized as x̂1 = x1.

The total energy that the agent is going to need for the next timeslot is
computed using equation (13):

En+1 =
Cagent

C
· x̂n+1 (13)

given Cagent is the number of the agent’s consumers and C is the number of
all consumers of the market. Upon checking its portfolio, Mertacor asks for the
following amount of energy from every one of its contracted producers:

en+1 =
En+1

Pagent
(14)

where Pagent is the number of producers in the portfolio.

5 Experiments

Three sets of experiments were conducted in order to identify the parameters
that would lead to the most profitable policies for Mertacor. Policies were eval-
uated against their mean market share of producers/consumers, and the total
profit of the agents participating. Each of the experiments was conducted for
different configurations of producers and consumers (discussed below) and each
experiment was conducted ten times, so the mean values of the derived metrics
are presented.

It should also be denoted that all agents tested were assigned the same energy
prediction policy. Results are quite intriguing and discussed later on.

5.1 Price Formation Parameters Experiments

From the various parameters of the price formation policy proposed in 4.1, the
experimentation parameter is by far the most interesting, since it is crucial for
the agent’s competing tactics. Other parameters may be given some determined
pseudo-optimal values as their impact is not optimum for a certain value. Take
agent memory for instance: the moving average method utilized ensures proper
weights as long as the memory is not too small. To this end, variables c and r
are assigned the values 0.20 and 0.95 respectively.

Several experimentation parameter values were tested (omitted due to space
limitations). Table 1 discusses market share and total profit for three different
consumer/producer compilations, for experimentation parameter values 0.5, 1.0,
and 2.0.

Referring to Table 1, deviations are small, something expected since the other
policies encapsulated in the agent are identical, resulting in partial absorption
of the influence of the experimentation parameter. However, when the latter
is set to 0.5, one may notice that Mertacor makes more total profit than its
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EXP 0.5 EXP 1.0 EXP 2.0
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Fig. 6. Graphs showing the total profits for experiments competing (a) different values
of the experimentation parameter (b) the two tariff update policies and (c) different
price formation policies. The experiments are shown for different settings of producers
and consumers, 4 producers & 8 consumers ( ), 4 producers & 16 consumers ( ), 8
producers & 16 consumers ( ).

competitors for small numbers of customers (4 consumers and 8 producers). On
the contrary, setting the parameter to 2.0 is more effective with respect to market
share, something expected since the agent is more willing to explore its space
(see Section 4.1). Taking the golden rule, the value 1.0 is selected as the optimal
one for Mertacor, in order to perform well for both profit and market share.

Table 1. Results of price formation parameters experiments

EXP 0.5 EXP 1.0 EXP 2.0
Market Total Market Total Market Total
share profit share profit share profit

4 cons
31,11 32,25 1621,9 31,19 32,65 1614,6 36,89 31,95 1490,7

8 prod
4 cons

29,88 32,32 3164,4 31,98 30,02 3249,8 37,33 34,70 2671,4
16 prod
8 cons

29,31 26,29 2830,3 31,42 31,91 2917,1 37,69 36,26 2728,1
16 prod

5.2 Tariff Update Experiments

The two tariff update policies introduced in Section 4.2 were tested against each
other. Mertacor’s experimentation parameter was set to 1.0. The results are
depicted in Table 2, where it is evident that the fuzzy logic tariff update policy
clearly outperforms the basic scheme, both with respect to profit, as well as
market share.
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5.3 Price Formation Experiments

The third set of experiments is a comparison of Mertacor’s strategy against the
four strategies analyzed in Section 2.2: ZI, ZIP, RE, GD. The strategies were
adjusted in the Mertacor model, in order to preserve experiment consistency.
All five competing agents employ the fuzzy logic tariff update policy and the en-
ergy prediction policy discussed in Sections 4.2 and 4.3, respectively. Mertacor’s
experimentation parameter is set to its optimal value (1.0). Experiment results
are shown in Table 3.

Table 2. Results of tariff update experiments

Basic Fuzzy logic
Market Total Market Total
share profit share profit

4 cons
25,25 33,95 1926,9 72,94 57,40 4310,1

8 prod
4 cons

19,36 31,55 2880,5 76,79 58,33 9065,0
16 prod
8 cons

23,96 39,6 3734,3 72,88 41,79 8917,2
16 prod

Table 3. Results of price formation experiments

ZI ZIP RE GD Mertacor
Market Total Market Total Market Total Market Total Market Total
share profit share profit share profit share profit share profit

4 cons
11,58 8,60 416,4 20,61 20,15 822,7 4,13 5,85 254,1 18,36 10,55 652,7 44,66 51,35 940,1

8 prod
4 cons

14,39 5,80 890,1 19,36 19,50 1259,0 6,46 7,20 575,1 18,00 11,94 1080,9 41,55 51,23 1604,7
16 prod
8 cons

10,28 12,96 741,0 20,56 19,39 1237,5 6,11 11,11 485,0 15,26 16,15 824,4 46,91 34,15 1528,5
16 prod

Results are quite encouraging for the Mertacor approach. Additionally, useful
conclusions are drawn for the potential of the various approaches on Power TAC
in general: ZIP outperforms all other agents, GD outperforms ZI and RE, and
RE has disappointing results since its total profit is comparable to the random
ZI agent. Thus, one may argue that adaptive strategies (ZIP, GD, Mertacor)
seem to achieve better results than non-adaptive (ZI) or self-adaptive (RE) ones.
In addition, predictive agents (ZIP, Mertacor) perform better than all others.
These conclusions are rather expected since Power TAC’s tariff market is an open
auction market that provides agents with vast amount of exploitable information.

6 Conclusion

The research challenges provided by competitions such as Power TAC are many-
fold. Even when the problem of a free decentralized market is delimited within
such a competition, the field is certainly productive when it comes down to
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designing DA strategies. To do so, one has to explore various research areas,
such as Fuzzy Logic or Time Series Analysis.

Based on the experiments conducted, adaptive predictive price formation
policies prove efficient in such open-type markets. Learning techniques perform
worse, since their sealed-type advantage is depressed. In general, strategies that
exploit optimally information seem to be advantageous, like in the case of the
fuzzy logic tariff update strategy. In addition, the agent’s ability to explore is
crucial. This is proven not only by the optimization of the experimentation pa-
rameter, but also by the success of predictive strategies.

Further research is encouraged along several aspects of the agent’s strategy.
As far as the price formation policy is concerned, it would be possible to de-
sign different experimentation procedures (e.g. use another probability density
function). The strategy could prove even more effective if certain values, such
as the experimentation parameter or the limits of the fuzzy logic update policy,
were dynamically adjusted to the market, instead of being pre-specified. Finally,
with respect to the energy prediction policy, exponential smoothing could be
replaced by several time series forecasting models (e.g. an ARMA model), in
order to further explore for the optimal production scheme.
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