Supporting Agent-Oriented Software
Engineering for Data Mining Enhanced Agent
Development

Andreas L. Symeonidis!-2, Panagiotis Toulis®, and Pericles A. Mitkas!2

! Electrical & Computer Engineering Department,
Aristotle University of Thessaloniki
2 Informatics and Telematics Institute, CERTH
Thessaloniki, Greece
asymeon@eng.auth.gr, mitkas@auth.gr
3 Department of Statistics, Harvard University, Boston, MA, USA
ptoulis@fas.harvard.edu

Abstract. The emergence of Multi-Agent systems as a software
paradigm that most suitably fits all types of problems and architectures is
already experiencing significant revisions. A more consistent approach on
agent programming, and the adoption of Software Engineering standards
has indicated the pros and cons of Agent Technology and has limited the
scope of the, once considered, programming ‘panacea’. Nowadays, the
most active area of agent development is by far that of intelligent agent
systems, where learning, adaptation, and knowledge extraction are at
the core of the related research effort. Discussing knowledge extraction,
data mining, once infamous for its application on bank processing and
intelligence agencies, has become an unmatched enabling technology for
intelligent systems. Naturally enough, a fruitful synergy of the aforemen-
tioned technologies has already been proposed that would combine the
benefits of both worlds and would offer computer scientists with new
tools in their effort to build more sophisticated software systems. Cur-
rent work discusses Agent Academy, an agent toolkit that supports: a)
rapid agent application development and, b) dynamic incorporation of
knowledge extracted by the use of data mining techniques into agent
behaviors in an as much untroubled manner as possible.

1 Introduction

More than a decade ago, agents appeared as a ‘hype’ that was abstract enough to
fit any given or future problem. It is only recently that their range of applicability
has been narrowed down to specific application domains (e.g. Grid computing [7],
electronic auctions [8], autonomic computing [IT] and social networks [9]) that
exploit the beneficial characteristics of agents. Still, software practitioners are
reluctant in incorporating agent solutions to solve real-world problems, even
in the case of the above-mentioned domains, where agents have proven to be
efficient. This reluctance has been attributed to many reasons that range from

L. Cao et al.: ADMI 2012, LNAI 7607, pp. 7-EI] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

8 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

the lack of consensus in definitions and the interdisciplinary nature of agent
computing to the lack of tools and technologies that truly allege the real benefits
of Agent Technology (AT) [12]. In fact, AT still seems like it is missing its true
scope.

May one take a closer look at the domains that AT is considered as the proper
programming ‘metaphor’, one may notice that, apart from their dynamic nature
and their versatility, these domains have another thing in common: they gener-
ate vast quantities of data at extreme rates. Data from heterogeneous sources,
of varying context and of different semantics become available, dictating the ex-
ploitation of this “pile” of information, in order to become useful bits and pieces
of knowledge, the so-called knowledge nuggets [13]. Nuggets that will be used
by software systems and will add intelligence, in the sense of adaptability, trend
identification and prevention of decision deadlocks.

To this end, Data Mining (DM) appears to be a suitable paradigm for ex-
tracting useful knowledge. The application domain of Data Mining and its re-
lated techniques and technologies have been greatly expanded in the last few
years. The development of automated data collection tools has fueled the imper-
ative need for better interpretation and exploitation of massive data volumes.
The continuous improvement of hardware, along with the existence of support-
ing algorithms has enabled the development and flourishing of sophisticated
DM methodologies. Issues concerning data normalization, algorithm complex-
ity and scalability, result validation and comprehension have been successfully
dealt with [ILI0lT5]. Numerous approaches have been adopted for the realization
of autonomous and versatile DM tools to support all the appropriate pre- and
post-processing steps of the knowledge discovery process in databases [56].

From all the above, the synergy of AT with DM seems promising towards
providing a thrust in the development and establishment of intelligent agent
systems [3,4]. Knowledge hidden in voluminous data repositories can be ex-
tracted by data mining, and provide the inference mechanisms or simply the
behavior of agents and multi-agent systems. In other words, these knowledge
nuggets may constitute the building blocks of agent intelligence. We argue that
the two, otherwise diverse, technologies of data mining and intelligent agents
can complement and benefit from each other, yielding more efficient solutions.

However, while the pieces are already there, the puzzle is far from complete.
No existing tool provides solutions to the theoretical problems of researchers
striving to seamlessly integrate data mining with agent technology, nor to the
practical issues developers face when attempting to build even simple multi-agent
systems (MAS).

Agent Academy (AA) is a practical approach to the problem of establish-
ing a working synergy between software agents and data mining. As a lower
CASE (Computer Aided Software Engineering) tool, Agent Academy combines
the power of two proven and robust software packages (APIs), namely JADE [2]
and WEKA [15], and along with the related theoretical framework, AA sketches
a new methodology for building data mining-enabled agents. As a development
tool, Agent Academy is an open source IDE with features like structured code

Supporting Agent-Oriented Software Engineering 9

editing, graphical debugging and beginner-friendly interface to data mining pro-
cedures. Finally, as a framework, Agent Academy is a complete solution enabling
the creation of software agents at any level of granularity, with specific interest
on intelligent systems and decision making.

Technically, Agent Academy acts as a hub between the agent development
phase and the data mining process by adding models as separate and indepen-
dent threads into the agent’s thread pool. These execution units, usually called
behaviors in software agent terminology, are reprogrammable, reusable and even
movable among agents. Using Agent Academy, intelligent agents are not an af-
terthought, but rather the very basic capability that this engineering tool has to
offer.

The remainder of this chapter is organized as follows: Section 2l presents the
methodology to follow in order to ensure the synergy between AT and DM.
Section [3] discusses Agent Academy in detail, the development framework for
DM-enriched MAS, while Section Ml summarizes work presented and discusses
future extensions.

2 Integrating Agents and Data Mining

The need to couple AT with DM comes from the emergent need to improve agent
systems with knowledge derived from DM, so as to strengthen their existence in
the software programming scenery. Nevertheless, coupling of the two technologies
does not come seamlessly, since the inductive nature of data mining imposes logic
limitations and hinders the application of the extracted knowledge on deductive
systems, such as multi-agent systems. The methodology and the supporting tool
described within the context of this paper take all the relevant limitations and
considerations into account and provide a pathway for employing data mining
techniques in order to augment agent intelligence.

Knowledge extraction capabilities must be present in agent design, as early
as in the agent modeling phase. During this process, the extracted models of the
DM techniques applied become part of the knowledge model of agents, providing
them with the ability to enjoy DM advantages.

In Symeonidis and Mitkas [I4], the reader may find more details on the unified
methodology for transferring DM extracted knowledge into newly created agents.
Knowledge diffusion is instantiated in three different ways, always with respect
with the levels of diffusion of the extracted knowledge (DM on the application
level of a MAS, DM on the behavioral level of a MAS, DM on the evolutionary
agent communities). The iterative process of retraining through DM on newly
acquired data is employed, in order to enhance the efficiency of intelligent agent
behavior.

As already mentioned, the methodology presented is also supported by the
respective toolkit. Using Agent Academy, the developer may automate (or semi-
automate) several of the tasks involved in the development and instantiation
of a MAS. He/she follows the steps shown in Figure [in order to build a
DM-enhanced MAS in an untroubled manner. Details on the Agent Academy
framework as discussed next.

10 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

Create ontology @

®

®
®

Apply DM techniques
Extract knowledge model
Build Intelligent DM behavior

Create agents

Build procedural behaviors

|_ _______ a
Monitor agents | @

l_

—
®

Fig. 1. The MAS development steps

3 Agent Academy

3.1 Introduction

Agent Academy is an open-source framework and integrated development envi-
ronment (IDE) for creating software agents and multi-agent systems, and for aug-
menting agent intelligence through data mining. It follows the aforementioned
methodology, in order to support the seamless integration of Agent Technology
and Data Mining.

The core objectives, among others, of Agent Academy are to:

- Provide an easy-to-use tool for building agents, multi-agent systems and
agent communities

- Exploit Data Mining techniques for dynamically improving the behavior of
agents and the decision-making process in multi-agent systems

Supporting Agent-Oriented Software Engineering 11

- Serve as a benchmark for the systematic study of agent intelligence generated
by training them on available information and retraining them whenever
needed.

- Empower enterprize agent solutions, by improving the quality of provided
services.

Agent Academy has been implemented upon the JADE and WEKA APIs
(Application Programming Interfaces), in order to provide the functional-
ity it promises. The initial implementation of AA was funded under the
fifth Framework Program, where the theoretical background was formulated.
After the successful completion of the project the second version of Agent
Academy (AA-II) was built, where emphasis was given on the user interface
and functionality. Agent Academy is built in Java and is available at Source-
forge (http://sourceforge.net/projects/agentacademy). The current release
contains 237 Java source files and is spun on over 28,000 lines of code.

The original Agent Academy vision stands on the edge of being an intelligent
agent research tool. Nevertheless, considerable effort was given in order to pro-
vide adequate quality level and user-friendliness, so as to support industrial-
scope agent applications. To this end, one of the pivotal requirements for AA
was to provide maximum functionality with the minimum learning curve. Agent
Academy has been built around well-known concepts and practices, not trying
to introduce new APIs and standards, rather to increase applicability of the
already established ones. The novelty of AA lies on the fruitful integration of
agent and data mining technologies, and the methodology for doing so. In fact,
Agent Academy proposes a new line of actions for creating DM-enhanced agents,
through a simple and well-defined workflow. Prior to unfolding the details of this
workflow we define the concepts and conventions AA is founded on (Table []).

In a typical scenario the developer should follow the methodology described in
the previous section in order to build a new agent application. He/she should first
create behaviors, as orthogonal as possible. while in a parallel process, he/she
should build the data mining models which apply to the application under de-
velopment. Next, everything should be organized/assigned to agents, in order
to finally build the multi-agent system by connecting the developed software
agents.

3.2 Agent Academy Architecture

The AA IDE offers a complete set of modules that can guide and help through
the entire process. These modules, namely the Behavior Design Tool, the Agent
Design Tool, and the MAS Design Tool support the respective development
phases of an Agent Academy project through graphical user interfaces, while
they also support code editing, debugging and compilation.

Nevertheless, AA follows a component-based approach, where each of the
modules is loosely coupled with the others. This way the user may decide to

12 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

build (JADE compliant) behaviors or (WEKA) data mining models with any
other tool/framework and just import them in AA, just by providing the relative
In the following sections we first provide a qualitative
description of the three core modules, and then continue with a more technical

path of their location.

description on them.

Table 1. Agent Academy conventions

Behaviors

Intelligent DM
behaviors

Agents

Intelligent DM
Agents

Multi-agent Systems

Agent Academy Overview. Agent Academy organizes work into projects.
Each project has a private space that contains all the necessary elements code
for the development and instantiation of an intelligent MAS. These elements
may be of two types: i) software snippets, i.e. programming code resulting to
behavior classes and agent classes, and ii) data (either in the form of a file or as
database connection), where data mining will be applied on in order to generate

DM models.

Blocks of code sharing the same functional description,
which can, conceptually, be grouped together. Based on
the JADE paradigm, behaviors are essentially distinct
threads of execution that run in parallel and are assigned
to agents, in order to exhibit desired (agent) properties

Technically, the combination of plain (procedural) agent
behaviors with data mining models. Any possible type
of data mining generated knowledge can serve as the el-
ement of an intelligent behavior, e.g. classification intel-
ligent behavior, clustering intelligent behavior, etc. Such
types of behaviors are based on data mining models built
by the use of the WEKA API (most of the times offline).
AA then uptakes the task of transforming the WEKA-
generated model into a compiled JADE behavior which
can, after that point, operate indistinguishably in any
JADE-developed MAS. This type of behavior is a special
case of an Intelligent behavior

Distinct software entities, programming metaphors, em-
bracing a groups of behaviors. Agents in AA can com-
municate with others through well established protocols
(the FIPA Agent Communication Language - ACL)

Agents that have at least one intelligent DM behavior in
their collection of behaviors. In practice, such agents can
emulate any kind of high-level cognitive task backed by
the corresponding DM model (classify, cluster, associate
etc). This type of agents is a special case of an intelligent
agent

Collections of agents, intelligent or not, operating under
the same environment

Supporting Agent-Oriented Software Engineering 13

Creating Agent Behaviors. The notion of agent behavior is very popular
among agent-oriented software methodologies and represents essentially a block
of code that encapsulates an execution thread, aiming to fulfill one, or a few
well-defined tasks. Specifically in the JADE API, which is employed by Agent
Academy, an agent behavior is realized as a distinct Java class.

The Behavior Design Tool (BDT) of Agent Academy implements a minimal
code editing tool with code automation functionality. BDT comprises two panes:
the BDT toolbar and the code editing area. Although minimal, BDT should be
considered as a fully functional agent behavior creation tool, since it provides
features such as automatic code generation for typical agent code blocks (such
sending /receiving FIPA ACL messages), structured code tools, text editing and
compilation options. Apart from plain (procedural) behaviors, Agent Academy
defines another category of agent behaviors, namely the Intelligent DM Behav-
iors, which encapsulate DM models in an AA-compliant code wrapper. These
“intelligent” pieces of code are created through a 5-step process, which employs
the WEKA API to build the data mining models and then compile them into
JADE-compliant behaviors.

Creating Software Agents. The Agent Design Tool (ADT) is the functional
equivalent of BDT for agent creation. The definition of “agency” within the
development context of Agent Academy is absolutely generic: an agent is simply
thought of as a meaningful grouping of agent behaviors, aiming to a specific
set of tasks, following a specific workflow. Thus, in order to build an agent
in AA, the developer needs only to assign the agent with a set of behaviors
and a sequence of behavior execution. All project behaviors, both plain and
intelligent, are available for insertion to the agents’ execution pool, through the
use of automatic IDE tools.

ADT comprises the code editing area and the ADT toolbar that provides code
generation and debugging functions. ADT can be used to assign behaviors to agents,
compile the generated code, generate agent class files, and debug agent execution.

Instantiating Multi-agent Systems. The MAS Design Tool (MDT) allows
the developer to organize agents into multi-agent systems. It provides the tools
to initialize, pause and terminate the MAS, as well as to monitor agent state
(alive, dead, etc). Typically, this step concludes an Agent Academy project, i.e.
the development and instantiation phase of a MAS.

3.3 Technical Details of Agent Academy

Upon project creation, Agent Academy creates a specific folder structure under
the directory:

<INSTALL DIR>/user/projects/<PROJECT NAME>

In the previous section we provided an overview of the AA modules. Here, we
further elaborate on them.

The Behavior Design Tool. The first step in the Agent Academy workflow is
the creation of the agent behaviors which are the software blocks that encapsulate

14 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

the functionality of the agents. These behaviors are typical Java classes and can
be created using the Behavior Design Tool.

BDT provides a set of features that may assist in the creation of the agent be-
haviors. AA behaviors are extensions of well-defined JADE behaviors; this implies
that developers already familiar with the JADE framework may use BDT to build
behaviors directly. Even in the case of unexperienced developers, though, AA pro-
vides automated code generators to help the user through the behavior creation
process. The workflow of creating a new behavior entails the following:

1. Initializing the behavior, setting names and identifiers, and defining the type
of behavior

2. Adding fields, methods and blocks of code, through the Structured Edit Ac-
tion - SEA module, a specific-purpose module of the Agent Academy IDE.
The developer may, of course, write the communication source code him-
self/herself, in case he/she prefers

3. Specifying FIPA-compliant agent communication, through the respective
messaging buttons located on the BDT toolbar, which automatically gen-
erate code blocks for sending and receiving ACL messages. The developer
may, of course, write the communication source code himself/herself, in case
he/she prefers

4. Optionally documenting the behavior, by providing a small description and
saving it to the project behaviors notepad

5. Saving the newly created source code and compiling, directly from the AA
environment.

This workflow is supported by the functions depicted in Figure

Upon behavior initialization, the developer is requested to define the name of
the behavior, the sub-package the behavior should belong and its type. All the
fundamental JADE behaviors types are supported within the context of AA:

OneShotBehavior, where a behavior is executed only once
CyclicBehavior, where a behavior is executed ad infinitum

- TickerBehavior, where a behavior is executed periodically, with respect to
a user-defined time slot

WakerBehavior, where a behavior is executed when certain conditions are
met.

In addition, the JADE framework provides the archetypical behavior class
(SimpleBehavior), which can be modified in order to produce any kind of
functionality inside the generated behavior.

As already mentioned, the AA IDE supports automated code authoring for
generating FIPA-compliant ACL messages. This kind of functionality, along with
the documentation options AA provides, allow for rapid agent-based appli-
cation development.

One of the most interesting features of the BDT is the SEA, which offers a
systematic way to create Java class members along with a visual ‘summary’ of
the behavior functionality. Through the SEA feature developers may:

Supporting Agent-Oriented Software Engineering 15

21 Behaviour Design Toal: EET|
File Edit Search Tools Help

EREEAEE Profect: GeneraPraject | Courer ew BEE

sofce cofle | thscriphon

: Code editing tools

B Documentation

o Send ACL message

| Receive ACL message

3 Initialize behavior

Fig. 2. Functionality provided for creating agent behaviors

— Define class/instance fields and automatically generate get/set methods
for them (much like the Properties of the C# language)

— Define methods by providing their signatures

— Create documented code blocks.

24 Behaviour Design Tool: Untitled [ENIEN

File Edit Search Tools Help

(S K+ @lﬁ"A @? %1} Froject: GeneralProject ‘CounerNEw - 12 :‘

= S[E] =

Field type Field name
String v | |product_name

10 [¥ Create getiset methods 7

Dediaration Return Type Method Name Argument

publc + | |void ~+ | |process_product | |a_product_niame

£ Set Jpublic void process._product{String 2_product_name) {//Methad Name ; process_product

Fig. 3. Creating fields and methods

Developers have the ability to transfer code blocks among methods and also
dynamically edit their content. The Description tab of the source code editor
can be used to provide with a brief summary of what the behavior really does.
As long as the developer conforms to the AA code structuring standards, this
approach can be quite beneficial for code clarity and maintainability.

Figure illustrates the use of SEA in defining a class field named
product name of type String, creating the get/set methods for it and

16 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

then defining a new method named process product (). May one use the
code editor, one can write the fundamental code blocks of the behavior, which
can be embedded to any method defined in the previous steps. Optionally they
can be tagged with a short text which describes their functionality. Figure @
depicts the process of creating a new source code block, tagged as “PROCESS
THE PRODUCT?”, and then adding the source code to implement the desired
functionality. By using the Method process list, one can embed the newly cre-
ated code block to any of the available methods inside the behavior. In this case
Agent Academy will automatically produce the resulting source code, but will
also inject some additional AA-oriented code useful for debugging purposes. In
fact, the additional code denotes the start and exit points of every behavior
created with the Behavior Design Tool, and by using a special debugging com-
ponent of the Agent Design Tool, it is easy monitor which behavior is executed
at any given time. Finally, the tags that are being assigned to each code block
are listed in succession at the Description tab, which summarizes quickly and
efficiently the behavior functionality.

| File Edit Search Tools Help

CEEI YA

Source code | Description|

import jade.core.behavicurs.*:
import jade.lang.acl.*:

Method: [pracess product =

Description: PROCESSING THE P

Body:
Sortint £°0:000:iH]
3pstem.oue.prine("\eln value +);

Fig. 4. Creating code blocks

It should be denoted that all source code libraries needed both for performing
JADE-related tasks and Agent Academy structures are automatically imported
during behavior initialization.

Intelligent Data Mining Behaviors. As already discussed, an Intelligent DM
behavior in Agent Academy is a typical JADE behavior that also incorporates
knowledge extracted by the application of DM techniques on problem related
data. This knowledge is represented by a DM model, like the ones that are
generated by the WEKA API. When building such an intelligent behavior, the

Supporting Agent-Oriented Software Engineering 17

user typically follows all the steps of the KDD process (section). Through
the AA-adapted WEKA GUI, he/she supplies the dataset DM will be applied
on, performs preprocessing, feature selection, algorithm parametrization, and
model evaluation, like in any given DM problem. After the DM model has been
built, the developer has to either approve it or request retraining, which im-
plies reconfiguration of the KDD process at any point (preprocessing, algorithm
parameters, etc). Upon model approval, the developer calls Agent Academy to
embed the generated model in a JADE behavior and compile it.

Following the AA conventions in the development of a AA project, data to
be mined are stored in a specific location:

<INSTALL DIR>/user/projects/<PROJECT NAME>/data/DMRepository/

To initiate the DM behavior building process, the user has to navigate from
“Tools” to “Create a Data Mining Behavior”, from the initial screen of Agent
Academy. In order to wrap the DM model in a JADE-compliant schema, AA cre-
ates a JADE CyclicBehavior, configured to wait for ACL messages adhering
to the following two constraints:

- The Ontology of the message should be set to the constant AAOntoloty.
ONTOLOGY NAME

- The ACL message protocol should be set according to the specific operation
that takes place. For example, if the DM model performs classification, the
protocol should be set to AAOntology.CLASSIFY REQUEST

These two constraints guarantee that an agent with the DM behavior will suc-
ceed in communicating with other agents on the specific topic (e.g. classification
task). In addition, the actual message content should be an object of the spe-
cific type class that extends the org.aa.ontology.DM TECHNIQUE REQUEST
class (in case of classification this should be the org.aa.ontology.Classify
Request class). This object, in fact, wraps the actual data tuple the model will
be applied on.

In response, the agent executing the intelligent behavior shall generate an ACL
message with the protocol field set to AAOntology.CLASSIFY RESPONSE (in
the case of classification) and the actual content of the message will be a serialized
object, namely of type org.aa.ontology.ClassifyResponse. This object,
in fact, wraps the output of the DM model, with respect to the input data tuple
the sender provided.

The actual mechanism of building an intelligent DM behavior is a bit more
complicated. When the developer builds such a behavior after having produced
the respective DM model, AA produces three additional files with extensions
.aadm, .aainst and .dat. These files contain the training dataset the model was
built on, along with the generated model itself. When an operation, such as
a classification,, is requested, Agent Academy retrieves the “.aainst” file and
regenerates it as a functional Java class, which is able to carry out the data
mining operation. This way, both the model and the agent behavior can be

18 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

created on-the-fly. The requests and responses that agents exchange in this con-
text should be subclasses of the Request and Response classes defined in the
org.aa.ontology package. AA by default defines such classes, like Classify
Request and ClusterRequest, nevertheless the user is allowed to define more
complex structures. These objects practically carry the data for processing in a
field of type org.aa.tools.DMList, which is essentially a vector of values,
double or String type.

3.4 Agent Design Tool

Agent Academy treats agents as logical groupings of software behaviors, based
on the idea that an agent is completely defined by the way it actually acts. Thus,
ADT provides all the functionality for inserting and organizing behaviors in an
agent execution pool. Figure [l illustrates the features of the Agent Design Tool,
listed below:

1. Agent definition, during which the user sets the name of the agent and
the package to which it belongs

2. Behavior assignment, which browses for project behaviors and lists them
for the user to assign. This feature is available through the “Add Behavior”
option.

3. Text editing and compilation options, where the user may manually
edit the source code, in case he/she deems necessary. Through this option
the developer may also invoke the Java compiler, so that the new agent class
is generated and is mapped to the agent

4. Agent Monitoring, which provides a graphical tool for validating agent
execution

5. Intelligent DM Behavior assignment, which enables the user to assign
intelligent DM behaviors to the agent behavior pool. Through this feature,
the user may also request for model retraining of a specific DM Behavior,
in case of poor performance or existence of update data. Retraining may be
performed on-the-fly, since all the model parameters are available and are
loaded on behavior initialization at runtime.

In order to initialize an agent, the developer has to select a name and optionally
select the package to which it shall be assigned to. Agent Academy considers
a default package for every behavior or agent, and any user-defined package
should be a sub-package of the default one. Thus, if <PROJECT NAME> denotes
the project name, behaviors are compiled by default as classes and are stored
in the <PROJECT NAME>.behaviors package, while agents are compiled and
stored in the <PROJECT NAME> . agents package. Naturally, the user is allowed
to organize class files into more packages, nevertheless it is mandatory all of them
to be sub-packages of the default packages. When the user browses for behaviors
to add to the agent, a list of Java classes are available through a regular ‘Open
File Dialog’. After the behaviors have been added, Agent Academy automatically
generates all the necessary code, so there is usually no need for extra work.
However there are two points that the user should take care of:

Supporting Agent-Oriented Software Engineering 19

21 AA version: 20 -~- User: ptoulis

File Tools Project Help

D “——
22 Agent Design Tool: 4 == %

File Tools Help

Iel%lg IEI'_’, Iw dess v |Add Al Behavior Retrain ‘ Project GEnEra\PrnJE(tl =&
soifee cobte | Eehavids|

Intelligent behaviors

Agent Monitor
Compile source code

Assign behaviors to agents
Agent initialization

Fig. 5. Agent Design Tool features

1. Up to this point, there is no way for Agent Academy to infer the ontology
the agents should communicate on. Therefore, the following source code line
is added in the agent source code:

this.getContentManager () .registerOntology (**) ;

The user, then, should replace the “** with the desired ontology for the
particular application. If a user-defined ontology does not exist, this line can
simply be commented out.

2. Special attention should be given to the way AA handles behavior construc-
tors. Currently, reflection is not used on behavior Java classes; as a result,
only constructors with no arguments are assumed and at any other case users
should manually edit the generated source code.

Given that all these issues are resolved, the generated source code can be com-
piled without problems.

A very important feature of ADT is the Agent Monitor, which can help greatly
with the runtime debugging of the agent application under development. It is a
graphical tool that enables AA developers to monitor when and in what order
the behaviors of a specific agent are executed. Given that at the core of the
agent-based software philosophy lies the multi-threaded (or parallel) program-
ming model, this feature guarantees that agents will perform exactly as they
were designed to. Additionally, the Agent Monitor provides with information on
the message queue of agents, enabling the developer to inspect how messages
are sent, received, and processed.

Figure [6] provides a screenshot of the Agent Monitor launched on an agent
with three distinct behaviors. At any given time, only one behavior should be
active, marked with a green square as shown in the figure. Using the monitor,
the user may also inspect how behaviors are interchanged during execution, as
well as the status and the message queue of the agent.

20 A.L. Symeonidis, P. Toulis, and P.A. Mitkas

File Tools Project Help

{12 fgenle=ian TootMandoce J é ——

File Tools Help

Source Code |

7 Message Queue 0 ; :
getContent FrocessBehavior RecelveBiehavior RespondBehavior

//getContd

FrocessBel
addBehavi
JadeFlatsy Agent State
ReceiveBel
addBehavi
JadeFlatsy
RespondBel
addBehavi Active
JadeFlats]

Send msg \

1/ /Method
1

Fig. 6. The Agent Monitor

Another important feature of ADT is the intelligent DM behaviors toolbar.
All available DM behaviors can be browsed in a drop down list and any of them
can be added to the agent behavior pool with a simple click of a button. AA
provides access to all intelligent DM behaviors that belong to the active project,
so that it is possible for two or more agents to share them. When a DM behavior
is retrained, it is dynamically updated to all agents employing it. And, though,
agents of the same project may share behaviors that belong to that project, at
the time being it is not possible for two projects to share code.

Multi-Agent System Design Tool. Having created all behaviors and all
agents that implement the business logic of the application, the final step is
to group everything under a Multi-Agent System. This is succeeded through
the MAS design tool. AA saves all the information of the agents participating
in the MAS in a simple text file with the extension .aamas (abbreviation for
“Agent Academy MAS”), for latter use. In addition to defining the MAS, MDT
initializes a JADE platform instance and allows the user to start/pause/stop the
execution of the MAS. Parallel to the instantiation of the MAS, AA also loads
the JADE sniffer, a tool for monitoring messages exchanged among agents.

4 Summary and Future Work

Within the context of this paper we have presented a methodology that provides
the ability to dynamically embed DM-extracted knowledge to agents and multi-
agent systems. Special emphasis is given on Agent Academy, the developed plat-
form that supports the whole process of building DM-enhanced agent systems.
It helps agent programmers to easily create agent behaviors, extract knowledge
models based on Data Mining and integrate all these into fully working MAS.

Supporting Agent-Oriented Software Engineering 21

AA can be thought of as a lower CASE (Computer Aided Software Engineer-
ing) tool, combining the power of two proven and robust software APIs, JADE
and WEKA. Agent Academy is an open source IDE with features like structured
code editing, graphical debugging and beginner-friendly interface to data mining
procedures.

Future directions include the incorporation of the Agent Performance Eval-

uation (APE) [I3] into the AA framework, in order to provide developers with
the tools for evaluating the performance of the agent systems developed.

References
1. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Reading (1996)
2. Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-agent Systems with

10.

11.

12.

13.

14.

15.

JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 89-101. Springer, Heidelberg (2001)

Cao, L.: Data mining and multi-agent integration. Springer-Verlag New York Inc.
(2009)

Cao, L., Weiss, G., Yu, P.S.: A brief introduction to agent mining. In: Autonomous
Agents and Multi-Agent Systems (2012)

Chen, M.-S., Han, J., Yu, P.S.: Data mining: an overview from a database perspec-
tive. IEEE Trans. on Knowledge and Data Engineering 8, 866-883 (1996)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data
mining: Towards a unifying framework. In: Knowledge Discovery and Data Mining,
pp. 82-88 (1996)

Foster, 1., Jennings, N.R., Kesselman, C.: Brain meets brawn: why grid and agents
need each other. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2004, pp. 8-15 (2004)
Gimpel, H., Jennings, N.R., Kersten, G., Okenfels, A., Weinhardt, C.: Negotiation,
auctions and market engineering. Springer (2008)

Gruber, T.: Collective knowledge systems: Where the social web meets the semantic
web. Web Semantics: Science, Services and Agents on the World Wide Web 6(1),
4-13 (2008); Semantic Web and Web 2.0

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers (2001)

McCann, J.A., Huebscher, M.C.: Evaluation Issues in Autonomic Computing. In:
Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3252, pp. 597-608.
Springer, Heidelberg (2004)

Kitchenham, B.A.: Evaluating software engineering methods and tool, part 2: se-
lecting an appropriate evaluation method technical criteria. SIGSOFT Softw. Eng.
Notes 21(2), 11-15 (1996)

Maimon, O., Rokach, L. (eds.): Soft Computing for Knowledge Discovery and Data
Mining. Springer (2008)

Symeonidis, A.L., Mitkas, P.A.: Agent Intelligence Through Data Mining. Springer
Science and Business Media (2005)

Witten, [.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco (2005)

	Supporting Agent-Oriented Software Engineering for Data Mining Enhanced Agent Development
	Introduction
	Integrating Agents and Data Mining
	Agent Academy
	Introduction
	Agent Academy Architecture
	Technical Details of Agent Academy
	Agent Design Tool

	Summary and Future Work
	References

