2015 IEEE/ACM 4th International Workshop on Realizing Al Synergies in Software Engineering

Towards Interpretable Defect-Prone Component
Analysis using Genetic Fuzzy Systems

Themistoklis Diamantopoulos and Andreas Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki
Thessaloniki, Greece
thdiaman @issel.ee.auth.gr, asymeon@eng.auth.gr

Abstract—The problem of Software Reliability Prediction is
attracting the attention of several researchers during the last few
years. Various classification techniques are proposed in current
literature which involve the use of metrics drawn from version
control systems in order to classify software components as
defect-prone or defect-free. In this paper, we create a novel
genetic fuzzy rule-based system to efficiently model the defect-
proneness of each component. The system uses a Mamdani-
Assilian inference engine and models the problem as a one-
class classification task. System rules are constructed using a
genetic algorithm, where each chromosome represents a rule base
(Pittsburgh approach). The parameters of our fuzzy system and
the operators of the genetic algorithm are designed with regard
to producing interpretable output. Thus, the output offers not
only effective classification, but also a comprehensive set of rules
that can be easily visualized to extract useful conclusions about
the metrics of the software.

Index Terms—Software Reliability Prediction; defect-prone
components; software fault prediction; genetic fuzzy systems;

I. INTRODUCTION

Lately, several researchers focus on Software Reliability
Prediction (SRP). Although the area is quite broad, the main
line of work is similar. The problem at hand focuses on
discovering defect-prone components in a software project
either pre-release or post-release. Thus, the main aim is to
predict whether a software component contains code that
either has defects or could potentially evolve such. The term
“component” may refer to a class or a package (in an object-
oriented perspective), however higher-level components or
even “inter-project” level components (e.g. software projects
or web services) are also possible.

In the context of Software Reliability, current approaches
focus on predicting defect-prone components using several
quantitative metrics that are known to be satisfactory pre-
dictors of reliability [1]. These metrics may concern method-
level and class-level representations of software structure [2],
[3], or change metrics [4], [5]. The former include metrics
such as the number of lines of code per file/class, the depth
of the inheritance tree for a class, etc., whereas the latter
employ metrics drawn from revisions as kept by version
control systems, thus including the number of times a file has
been refactored, the number of authors that committed a file,
the number of lines that were changed for each file, etc.

In this paper, we focus on an interesting type of metrics,
introduced by Nagappan et al. [6], that fall in the latter
category. The authors define the notion of “change bursts”, i.e.

978-1-4673-7064-6/15 $31.00 © 2015 IEEE
DOI 10.1109/RAISE.2015.13

32

consecutive changes in files, in order to effectively associate
the procedure of writing fast (and perhaps “sloppy”) code for
a component with the possibility that the component is defect-
prone. Their approach indicates that change bursts are indeed
effective predictors of reliability.

Apart from the metrics involved, another important as-
pect of SRP involves the algorithms employed in order to
determine defect-prone components. Several algorithms have
been proposed in this area, and they have proven effective in
identifying defect-prone components [1], [6]. However, they
produce complex models that fail to describe the effect of the
metrics on the class attribute in a comprehensive manner.

In this paper, we design an interpretable system that reflects
the effect of different metrics in the defect-proneness of
each component. Given a change bursts dataset (which is
an effective way of representing the data [6]), we design a
fuzzy rule-based system that describes the contribution of the
metrics of the dataset, in an interpretable manner. We design
our classifier using a Genetic Algorithm (GA), in order to learn
an optimal and at the same time comprehensive set of rules. In
addition, we visualize the rule base of our classifier illustrating
its potential when a comprehensive set of rules is required.

Section II provides background knowledge on classification
using fuzzy systems and using GAs to learn fuzzy rules.
Section III reviews related work in the area of SRP, focusing
on the interpretability of the techniques used in this area.
Section IV focuses on the problem confronted and presents
the dataset used. Our methodology for building a novel genetic
fuzzy system is illustrated in V and is evaluated in Section VI,
both in terms of efficiency and in terms of interpretability.
Finally, Section VII concludes this paper providing useful
remarks and insight for future research.

II. BACKGROUND

This section provides essential background information on
the fields of Fuzzy Logic (FL) theory and GAs. Subsection II-A
focuses on the design of fuzzy rule-based systems in order
to solve the problem of classification, and subsection II-B
describes how GAs can be applied to the problem in order
to devise/optimize the rules of the classifier.

A. Fuzzy Rule-Based Systems for Classification

According to Fuzzy Logic (FL), problems are modeled and
solved with regard to their vagueness or fuzziness. Variables

are described using fuzzy sets and are assigned linguistic terms
(e.g. low, average) according to a membership function, that
denotes the degree to which an element belongs to the set.
Apart from describing imprecise (and sometimes uncertain)
data, FL theory has been used for control, or even regression
and classification problems. This is accomplished using a so
called fuzzy rule-based system'. Designing a fuzzy system
comes down to determining a rule base and a fuzzy inference
engine. Concerning the rule base, one can devise appropriate
rules by means of expert help, or by learning rules from data
(more about this in the next subsection). An example rule is:

IF 27 is A AND wz2 is B THEN y is C

where 1 is A, x9 is B are the antecedents of the rule,
denoting that the input variables x; and x> belong to the fuzzy
sets A and B respectively. The consequent of the rule, y is C
denotes that the output variable y belongs to the set C. Fuzzy
rules are usually preferred when the interpretability of the final
system is important. Intuitively, a rule is more interpetable
when it has fewer antecedents.

Fuzzy inference is performed according to the desired
output and can lead to: a) membership on an output fuzzy
set or b) an arithmetic value. The former are implemented
with Mamdani-Assilian (MA) controllers [7] and the latter with
Takagi-Sugeno (TS) controllers [8].

B. Learning Rules using Genetic Algorithms

Designing a rule base can be quite a tedious task, possibly
requiring human expert input. Since expert help may not be
available, several researchers have focused on deriving a rule
base given a known set of inputs and outputs [9]. In the case
of a fuzzy classifier, this can be seen as training the system.

GAs are inspired by the evolution theory of biology. When
designing a GA, one must decide on the form of each
individual, i.e. its chromosome, and the form of the operations
performed on the population of individuals, i.e. crossover,
mutation, and selection. In the case of learning rules, there are
three approaches, the Michigan approach [10], the Pittsburgh
approach [11], and the iterative rule learning approach [12].
The Michigan approach models each rule as an individual,
whereas in a Pittsburgh-style classifier, each individual is
a complete rule base. The iterative rule learning approach
is similar to the Michigan approach, however the algorithm
iteratively extracts the best individual/rule of the rule base and
determines the final rule base by reasoning among the selected
individuals.

Upon following one of the aforementioned approaches, the
problem is reduced to defining the population as well as the
evolution and fitness operators. Note that GAs can be used to
optimize a variety of parameters i.e. to evolve the rule base or
optimize both the rules and the membership functions.

'Also known as fuzzy control system, or fuzzy controller, or even simply
as fuzzy system. The terms are used interchangeably in this paper.

33

III. RELATED WORK

As noted in Section I, several metrics have been designed in
order to estimate the reliability of software components. The
problem can be formulated either as classification, i.e. clas-
sifying each component as defect-prone or defect-free, or as
regression, where the desired outcome is a ranked list of com-
ponents based on the defect-proneness of each component [1].
Although ranking methods can also be used, they deviate from
the scope of this work, thus the reader is referred to [13] for
more information. Concerning regression, early approaches in
the field involved regression systems that model the correlation
between the metrics and the defects of a component [3].
Currently, researchers use more complex models, such as Lin-
ear Regression [5]. Concerning classification, which is more
relevant to our work, several algorithms have been applied to
the problem. Zimmermann et al. [14] use Logistic Regression
to classify files as defect-prone or defect-free given class-level
metrics, while Menzies et al. [15] showed that Naive Bayes
is quite effective for detecting complex components, which as
they claim, are also the most defect-prone.

Although the aforementioned approaches are effective, they
result in black-box models, that are hard to interpret. Other
approaches involve the use of decision trees [4], [16] for defect
prediction, since decision trees are generally considered easy
to interpret. However, trees are interpretable only under certain
circumstances; when there are numerous metrics, scalar rule
antecedents of the form z; < 45.5 or x5 > 28.7 are almost as
interpretable as a regression model. An interesting approach by
Knab et al. [16] involves generating trees so that the distance
of each metric from the root denotes its importance. Although
the derived trees are interpretable, most information, such as
the value ranges of these metrics or the correlation among
them is absent from this representation.

A paradigm descriptive enough to retain much information
without compromising effectiveness is the use of fuzzy clas-
sifiers. One of the most indicative approaches is the one by
Khalsa [17]. The author uses a MA controller on the C&K
metrics [2]; this approach includes a rather large rule base,
however with only three metric variables. Thus, although the
rule base is indeed comprehensive, the system cannot easily
scale to e.g. 14 rules as in this paper.

Other approaches include also the TS fuzzy model designed
by Aljahdali and Sheta [18]. However, the system described
by the authors is applicable on predicting faults given fault
databases from multiple projects, thus the scenario largely
differs from ours both in terms of input variables and in
terms of the desired output, which is a reliability growth
model. Pandey and Goyal [19] also attempted to design a
comprehensive fuzzy model, however for a high-level set of
metrics set by experts (e.g. design team experience). Although
these metrics are usually used for cost and effort estimation?,
we refer to it in this section since its purpose is fault prediction.

2Software cost or effort estimation is a similar area to SRP. Although several
efforts have been made towards designing fuzzy cost estimation models, those
are omitted here since they deviate from the main area of this paper.

Finally, although there are efforts towards reliability pre-
diction using GAs, the latter are used in order to optimize
the parameters of other (non-fuzzy) models, such as the
architecture of neural networks [20] or the parameters of auto-
regressive models [21]. To the best of our knowledge, there is
no other research effort towards designing a comprehensive
fuzzy rule-based system, either using GA or not, for the
version-level metrics and, especially the burst metrics defined
in [6].

IV. METRICS AND DATASET EMPLOYED

Given that software is developed in a number of consecutive
builds (commits), i.e. one build immediately after another,
Nagappan et al. [6] define a consecutive number of changes
in a component of the software as a change burst. The
authors define the minimum size of a burst, burst size, and
the maximum gap within a burst, gap size. Small gap sizes
result in more and smaller bursts, as long as the burst size
is large enough (more about the effect of gap and burst sizes
in [6]). Thus, Nagappan et al. [6] define several metrics for
each component. These metrics are summarized in Table 1.

TABLE I
CHANGE BURSTS METRICS

Metric Description

Change Metrics
NumberOfChanges
NumConsecChanges
NumChangeBursts
TotalBurstSize
MaxChangeBurst

Number of builds that a component changed
Consecutive builds that a component changed
Total number of change bursts

Aggregate number of builds of all bursts
Number of builds of the largest change burst

Temporal Metrics
TimeFirstBurst
TimeLastBurst
TimeMaxBurst

The time that the first burst occurred
The time that the last burst occurred
The time that the maximum burst occurred

People Metrics
PeopleTotal
TotalPeopleInBurst
MaxPeopleInBurst

Number of people that changed the component
Number of people involved across all burst
Maximum number of people over all bursts

Churn Metrics

ChurnTotal Total number of modified lines of the component
TotalChurnInBurst ~ Total number of modified lines across all burst
MaxChurnInBurst ~ Maximum number of modified lines over all bursts

The metrics lie in four categories: (a) change metrics that
refer to the changes of files within bursts, (b) temporal metrics
that refer to the time of the bursts (early or late), (c) people
metrics for the people involved in changes/bursts, and (d)
churn metrics that measure modified lines per file. There is
also a binary metric for the presence or absence of bugs in
each component.

In this paper, we use the dataset of Eclipse 2.0 and evaluate
our algorithms against the class-granularity version of the
dataset. In total, Eclipse has 6728 classes, 626 of them are
defect-prone and the rest (5753) are defect-free. Thus, our
dataset consists of 6728 samples, while each of them includes
14 integer values for the attributes of Table I and a binary value
for the class attribute denoting if this class has any bugs.

34

V. A GENETIC FuzzY SYSTEM FOR DETECTING
DEFECT-PRONE COMPONENTS

This section describes a fuzzy rule base system for detecting
defect-prone components as well as a GA for learning the
fuzzy rules.

A. Fuzzy Rule-Based System

In our classification scenario, each metric of Table I is an
independent attribute, and the class attribute is the presence
or absence of bug(s) in the respective component. Although
there are multiple ways to define such a problem, we decided
to model it as a “one-class” classification, i.e. the class defect-
prone. This has an important advantage: the final model that
shall sufficiently model the data will be highly comprehensible
since it will only have one consequent. The architecture of our
system is shown in Figure 1:

X Fuzzification Puzzy Defuzzification Y
Inference
Fig. 1. Fuzzy rule-based system

The system has three stages. At first, the input variables (X)
are fuzzified by finding their membership degree in a set of
rules. After that, the fuzzy inference component determines the
membership degree for the output given the rules and the input
membership, and finally the output variable is defuzzified to
produce a numeric value.

Upon normalizing all attributes values in the range [0, 100],
we define three triangular fuzzy sets for each attribute, given
the triangular membership function:

0 ifr<a
(z—a)/(m—a) fa<z<m
T) = 1
HEMP@) = 4 i b—m) ifme<z<h D
0 ifx >0
These sets are the fuzzy set Low with a = —50, m = 0, and

b = 50, the fuzzy set Average with ¢ = 0, m = 50, and
b = 100, and the fuzzy set High with a = 50, b = 100, and
¢ = 150. The output is in a triangular fuzzy set named Large
(for large defect-proneness) with a =0, m =1, and b = 2.
We design a Mamdani-Assilian rule-based system to con-
front the classification problem as a one-class classification
problem. An example rule of the system has the form:

IF z; is Low AND =z is Average AND AND

Zn 1s High THEN y is Large WITH d

where d is the confidence degree for class Large. An example
of our system for two variables is shown in Figure 2. The AND
operator between two antecedents is defined as the minimum
of their membership values. Each rule outputs the membership
for the class Large of the DefectProneness variable.
After that, the final membership for the fuzzy set of Large

14 Low 1 Average 1 Large
min
\ — |03
(02 3 N 7 S N [~/
0 ' 0 . \
0 100 * 1 2°Y
w(zy) w(y)
14 in 1 Large
min 0 (’
0 0 T ¥
100 @ 0 1 2Y
IIl‘Xm
m(y)
14 Large
0.6
0-
1 2Y

Fig. 2. An example with two rules of the fuzzy system. x1 belongs to the
set High with degree 0.3 and to Average with degree 0.7. x2 belongs to
Average and Low with degrees 0.4 and 0.6 respectively. The output of each
rule is the minimum of its antecedents’ degrees (0.3 for the 1st and 0.6 for
the 2nd rule). The final output is their maximum 0.6.

is defined as the maximum among all membership values of
all rules. Finally, the system uses the max defuzzifier operator.
E.g. the component of Figure 2 is defect-prone with probability
0.6, and defect-free with probability 0.4.

B. Genetic Algorithm for Learning Fuzzy Rules

Upon defining the fuzzy system, we design a GA in order to
determine an optimal rule base. Our GA is shown in Figure 3.

t = 0
Initialize P(t)
Evaluate P(¢)
while (continue)
t =t 4+ 1
Select P(t) from P(t—1) with Tournament Selection
Evolve P(t)
Evaluate P(t)

Fig. 3. A genetic algorithm for evolving fuzzy rules

In Figure 3, ¢ represents the current generation. In each step
of the algorithm, the population P(t) is evaluated according
to a fitness function and the fittest individuals are selected to
form the new population. These individuals evolve using the
operators of crossover (which is equivalent to reproduction)
and mutation (which is adaptation of the individual itself to
the environment) in order to adapt to the environment. The
following paragraphs define the population, the crossover and
mutation operators, and the fitness function of our method.
1) Population: Our algorithm follows the Pittsburgh ap-
proach, with every individual being a complete rule base.
The main advantage of the Pittsburgh approach over other ap-
proaches is that it takes into account the interactions between
the rules. If we represented each rule as an individual, as in the

Michigan approach or the iterative rule learning approach, then
the final rule base may not cover effectively the whole dataset.
Thus, we define a subchromosome which represents one rule
of the system. Each gene of the subchromosome refers to the
linguistic value of the respective variable; the possible values
for a gene are 0, 1, 2, and 3, corresponding to the variables
Low, Average, High, and DontCare. The DontCare
operand has a membership function that is always equal to
1, hence it is not taken into account for the formulation of the
rule. An example subchromosome and the respective rule is:

[0[2]3[2[3[1[3[3[3[1[3[3[3][3]
IF 7 is Low AND =z is High AND x4 is High
AND xzg is Average AND z19 IS Low

Thus, the chromosome of the system is the concatenation of
several subchromosomes following the above pattern.

The initial individual is created similarly to the learning
from examples methodology [9] that uses a training set to
extract a rule base. We iterate over all defect-prone instances
and create a rule for each instance. This rule is added to the
rule base if it is not similar to the already added rules. Two
subchromosomes/rules are similar if v% (in our case 50%) of
their genes are the same. Thus, if the newly derived rule is
not similar to any of the existing ones, it is added to the rule
base. If, however, it is similar to an existing subchromosome,
then the latter is adapted to account for the information of
both subchromosomes. This adaptation is done by adding
DontCare operands in the place of the genes that the two
subchromosomes differ. For example, let 02120210112120
be the newly derived subchromosome; assuming that the
most similar subchromosome is 02120210120020, the second
subchromosome will change to 02120210133320 (switching
the tenth, eleventh and twelfth genes to 3). Upon creating the
initial individual, we create a population by applying mutation
over this individual.

2) Crossover and Mutation: Custom crossover and muta-
tion operators are defined to ensure that the iteration of the
different rule bases is rational.

Crossover involves two individuals and produces two new
(offspring) individuals by mixing the genes of the chromo-
somes. Known operators, such as one-point, two-point or
uniform crossover, are not a good fit for the chromosomes of
our scenario, since each chromosome is not only a sequence
of genes, but also a sequence of rules, i.e. subchromosomes.
Thus, we define a uniform crossover operator that only selects
crossover points that do not split the subchromosomes. In other
words, we allow swapping rules between rule bases, but we
do not allow swaps within the rules themselves.

Mutation refers to changing the genes of a chromosome;
the new value of each gene can be either uniformly selected
from the possible values, or selected so that it is close to its
old value. We use a two-step mutation function. In our case,
we used a two-step mutation function for each gene. For each
gene, we first assign a 50% probability of mutating the gene to
the value DontCare; this ensures that new rules are smaller
than the old ones. Next (if the first step was not activated),

35

1.0

—~ — Genetic Fuzzy System
8 — Logistic Regression
< 0.9¢
[
2
3 0.8
[
S
5 0.7+
°
=
]
9_“3 0.6
<

0.5

1 2 3 4 5 6 7 8 9 10
Burst size

(2)

1.0 —

Zos

t s

o

506

(] .7

2 e

0.4 e

2 .

o e

P »

F 02 Genetic Fuzzy System (AUC = 0.81)]]

e — Logistic Regression (AUC = 0.80)

08 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

(b)

Fig. 4. Diagram (a) depicts the AUC for the Genetic Fuzzy System and the Logistic Regression algorithm for different burst sizes given gap size equal to 2,
and diagram (b) provides the Receiver Operator Characteristic (ROC) curves of the two algorithms for gap size equal to 2 and burst size equal to 3.

we assign 50% probability of mutating the gene towards the
upper value and 50% probability of mutating it towards the
lower value. If there is no lower or upper value, we select
again the value 3. For example, if the value of a gene is 0, it
may either change to 1 or to 3, both with a 50% probability.

3) Fitness Function: The fitness function determines which
individuals survive in each generation; thus it represents
the desired features of our final chromosome. Our function
receives as input an individual and outputs a score based on
two criteria. The first criterion is the Area Under the Curve
(AUC). The AUC is computed by applying the rule base to the
training set (a random sample of it, equal to a quarter, to avoid
overfitting) and creating the Receiver Operator Characteristic
(ROC) curve. The AUC is preferred over other metrics, such
as recall or precision, since it models well the accuracy of the
result both in terms of maximizing true positives and in terms
of minimizing false positives.

Though effective, the AUC does not account for inter-
pretability. As a result, we use a second criterion: the average
length of each rule of the rule base. The length of each rule
depends on the number of DontCare operands. Finally, the
fitness function for a rule base RB is:

L(R)

zp| | @

Fitness(RB) = AUC(RB)-(MazL —
ReERB

where L(R) is the length of rule R (i.e. the count of non-
DontCare operands), and Max L is the maximum rule length
(in our case equal to 14).

Finally, we refrain from selecting the fittest individuals for
the next generation since then the GA might converge to
suboptimal solutions. Instead, tournament selection with size
equal to 3 is applied, so that 3 randomly selected individuals
participate in a tournament and the fittest one proceeds to the
next generation. In addition. we keep a Hall-of-Fame (HoF), to
ensure that after the execution of the GA, the optimal solution
is saved.

VI. EVALUATION

In this section, we provide the results of our evaluation on
the dataset described in Section IV.

36

A. Experimental Setup

We developed our method using the Distributed Evolution-
ary Algorithms in Python (DEAP) library [22] since it allows
finegraining the GA (e.g. defining custom crossover, mutation,
and fitness functions). The library also allowed us to execute
our method in 8 cores, thus resulting in low execution time.

Two thirds of the data compose the training set and the
remaining one third is the test set. We tested our Genetic Fuzzy
System (GFS) against a Logistic Regression (LR) classifier for
100 different combinations of gap and burst sizes, i.e. gap
size ranging from 1 to 10, and burst size ranging from 1 to
10. The population has size 40 and the number of generations
for the GA is 40. We also defined a 0.2 probability that two
individuals crossover and a 0.5 that an individual mutates.
Although this configuration seems sensitive, in fact it is almost
arbitrary; any configuration can lead to an optimal solution as
long as the number of generations is large enough.

B. Experimental Results

In the Eclipse dataset the burst size is proportional to the
gap size [6], thus bursts are isolated and cannot be merged to
each other. Hence, our results for all combinations of gap and
burst sizes were similar, with AUC around 0.8. Since both our
GFS and the LR classifier yielded optimal results for gap size
equal to 2, we provide the AUC for the two classifiers for this
gap size and for burst size ranging from 1 to 10 in Figure 4a.

The burst size does not affect the performance of either
classifier. Our GFS performs equally well to the LR classifier,
achieving better results for half of the burst size measurements.
In any case, though, this plot indicates that the AUC for the
two classifiers is within the limits of statistical insignificance.
This conclusion can be further explored in the ROC curves of
Figure 4b, which are drawn for gap size equal to 2 and burst
size equal to 3; the two curves are almost identical.

However, the main hypothesis of this paper involves not
only creating an effective classifier, which as shown in Fig-
ures 4a and 4b is achieved, but also producing interpretable
output. Therefore, given the same configuration of gap and
burst sizes (2 and 3 respectively) which proved optimal for
our GFS, we examine the rule base of the system to determine

TotalBurstSize IS Average AND TimeFirstBurst IS High AND TimeMaxBurst IS Low AND PeopleTotal IS Low
NumberOfChanges IS High AND NumConsecChanges IS High AND MaxChangeBurst IS Low AND TimeMaxBurst IS

High AND PeopleTotal IS Low AND TotalPeopleInBurst IS Average AND ChurnTotal IS Average

NumConsecChanges IS High AND MaxChangeBurst IS Average AND TotalPeopleInBurst IS High AND ChurnTotal

IS Average AND MaxChurnInBurst IS Average

1. IF NumberOfChanges IS Average

2. IF NumberOfChanges IS High AND NumConsecChanges IS Low

3. IF NumberOfChanges IS Average

4. IF

5. IF

6. IF MaxChangeBurst IS Low AND MaxPeopleInBurst IS High AND MaxChurnInBurst IS Low
7. IF

8. IF TotalBurstSize IS High

9. IF NumChangeBursts IS Average AND PeopleTotal IS Average
10. IF MaxChangeBurst IS High AND TotalChurnInBurst IS Average
11. IF NumberOfChanges IS Average AND NumChangeBursts IS High
12. IF

NumConsecChanges IS Average AND PeopleTotal IS Low AND ChurnTotal IS Average

Fig. 5. Fuzzy rule base of the Genetic Fuzzy System. The consequent is always the same (THEN DefectProneness IS Large), so it is omitted.

whether it is comprehensive. The fuzzy rules of our GFS are
shown in Figure 5. It is interesting to note that rules 1 and 3
are identical. This is not totally unexpected since similar rules
are indeed penalized when creating the initial population, yet
using mutation and crossover may result in similar (or in this
case identical) rules. In this case, we may assume that having
identical rules implies that no further training is required since
any new rules will not add more information.

We can comment on the interpretability of the rule base
shown in Figure 5 using a variety of factors. At first, the size
of the rule base is quite small; we succeeded in extracting
the minimal amount of 12 rules that successfully describe
6728 instances. Furthermore, the length of each rule is also
quite lower than expected. Notably, the rule with the maximum
length, rule 5, has only 7 antecedents, so it includes only half
of the metrics defined in Table 1. In addition, 9 out of 12 rules,
rules 1-3, 6, and 8-12, have at most 3 antecedents. Finally, the
average rule length is lower than 3 (the exact value is 2.75).

Although useful conclusions can be drawn by simply ex-
amining this rule base, we also visualize the rules in order to
better illustrate how our system can provide a comprehensive
reliability analysis. We visualize each rule using blocks when
a variable belongs to a set. Figure 6a visualizes the 7th rule, al-
lowing us to draw conclusions. For example, we could say that
components are defect-prone when they change consecutively
(NumConsecChanges IS High), or when there is a fair
amount of lines modified (ChurnTotal IS Average).

Although reading and visualizing these rules one by one is
acceptable due to their small size and length, we would like to
go one step further by visualizing the whole rule base. This can
be done in a variety of ways [23]. The visualization method
to be used depends on several factors, such as the number
of antecedents per rule, the number of fuzzy sets, etc. In our
case, that the rule base is quite small, using an overly complex
method to visualize it would be an overkill. As a result, we
visualize the rule base in Figure 6b using transparent blocks.

In Figure 6b, each rule is a layer of the diagram. Given that
each layer has transparency equal to 0.33 (which is enough
since no more than 3 rules have a common antecedent), we
can start from the first rule and plot it on the diagram, and then
plot the second one, etc. until we plot the final (twelfth) rule.

37

Darker areas represent high correlations between the metric
values and the defect-proneness of the component, whereas
lighter ones denote smaller effect on its defect-proneness.
Given this diagram, one can conclude that a component
is defect-prone when it changes often (NumberOfChanges
IS Average OR High), especially if the changes are con-
secutive (NumConsecChanges IS High), or when few
people work on the component (PeopleTotal IS Low)
but most of them during bursts (TotalPeopleInBurst
IS Average OR High). Other metrics may have little or
no effect to defect-proneness. Thus, a component may or may
not be defect-prone, regardless of when the last burst occurred
(TimeLastBurst), while the time of the first burst does not
strongly affect the consequent; it is somewhat possible if it is
late (TimeFirstBurst IS High), but this block is light.

VII. CONCLUSION

Although several research efforts on SRP are effective,
they usually lack interpretability. In this paper, we designed
a novel fuzzy rule-based system which is equally effective to
standard classifiers, yet also yields comprehensive results. The
reduction of the problem to one-class classification and the use
of a rule-length criterion to the GA fitness function resulted in
small comprehensive rules that can be visualized in an intuitive
manner. In addition, the proper design of the population of the
GA and the crossover and mutation operators ensured that the
algorithm achieves satisfactory results.

Despite evaluating our method on a single dataset, the
Eclipse IDE is a complex software project indicating that
our GFS may also be applicable to other projects, which
is a fair assumption to be explored further in future work.
Furthermore, even if we do not claim that the burst metrics
are effective on all datasets, our methodology is metric-
agnostic, i.e. it can be adapted to other types of metrics.
Concerning performance, our GFS is stable since the resulting
rule bases from multiple runs are very similar (omitted due
to space limitations). Finally, since effectiveness is not our
main hypothesis, we refrain from discussing the statistical
significance of our approach compared to LS or comparing
the methods in a cross-validation scheme, and focus on the
interpretability of the rule base. In any case, we argue that the

High

Average
R S
S S G SIS EFSOSSSISS S
ISEESEIN P, C I LI D
moq,(o$$$§7\w¢¢@¢¢
FOETITITLIFILSIILSES
O 5 A L o P8R OCSSI
FELESESLETEL "SS

TS 5 £E
S % o o

SEsS &8 &
S

(a)

Average

Fig. 6. Visualization of fuzzy rules using semi-transparent blocks. Diagram (a) depicts the 7th rule of the rule base, and diagram (b) depicts the rule base.
Since each rule is a layer, the transparency degree of an antecedent of diagram (b) indicates the support of this antecedent in the rule base.

outcome of an SRP method should not be a classification, but
rather a reliability analysis, with a comprehensive set of rules.

Our approach can provide several ideas for future research.
At first, concerning the fuzzy rules, one can evaluate different
configurations including two-class and one-class rules in order
to effectively solve the problem, while the effect of GAs
can also be evaluated with regard to other differently derived
fuzzy systems. In addition, interesting comparisons can be
made by evaluating rule bases derived using the Michigan
and Pittsburgh approaches. Finally, the interpretability versus
accuracy trade-off of our GFS can be explored, based on
different rule lengths and rule base sizes.

ACKNOWLEDGMENT

Parts of this work have been supported by the FP7 Collabo-
rative Project S-CASE (Grant Agreement No 610717), funded
by the European Commission.

REFERENCES
(1]

Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating
Defect Prediction Approaches: A Benchmark and an Extensive Compar-
ison. Empirical Software Engineering, 17(4-5):531-577, August 2012.
S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476-493,
June 1994.

F. Brito e Abreu and W. Melo. Evaluating the Impact of Object-Oriented
Design on Software Quality. In Proceedings of the 3rd International
Software Metrics Symposium, pages 90-99, Mar 1996.

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes
for Defect Prediction. In Proceedings of the 30th International Confer-
ence on Software Engineering, pages 181-190, New York, USA, 2008.
A.E. Hassan. Predicting Faults Using the Complexity of Code Changes.
In Proceedings of the IEEE 31st International Conference on Software
Engineering, pages 78-88, May 2009.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy.
Change Bursts as Defect Predictors. In Proceedings of the 2010
IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE), pages 309-318, Nov 2010.

E. H. Mamdani and S. Assilian. An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller. International Journal of Man-Machine
Studies, 7(1):1-13, 1975.

T. Takagi and M. Sugeno. Fuzzy Identification of Systems and Its
Applications to Modeling and Control. IEEE Transactions on Systems,
Man and Cybernetics, SMC-15(1):116-132, Jan 1985.

38

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

L.-X. Wang and J.M. Mendel. Generating Fuzzy Rules by Learning
from Examples. IEEE Transactions on Systems, Man and Cybernetics,
22(6):1414-1427, Nov 1992.

John H. Holland and Judith S. Reitman. Cognitive Systems Based on
Adaptive Algorithms. In Pattern directed inference systems, pages 313—
329. Academic Press, New York, USA, 1978.

Stephen Frederick Smith. A Learning System Based on Genetic Adaptive
Algorithms. PhD thesis, University of Pittsburgh, PA, USA, 1980.
Gilles Venturini. SIA: A Supervised Inductive Algorithm with Genetic
Search for Learning Attributes Based Concepts. In Proceedings of the
European Conference on Machine Learning, pages 280-296, London,
UK, 1993. Springer-Verlag.

X. Yang, K. Tang, and X. Yao. A learning-to-rank approach to software
defect prediction. Reliability, IEEE Transactions on, PP(99):1-13, 2014.
Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting
Defects for Eclipse. In Proceedings of the Third International Workshop
on Predictor Models in Software Engineering, pages 9-19, Washington,
DC, USA, 2007. IEEE Computer Society.

Tim Menzies, Jeremy Greenwald, and Art Frank. Data Mining Static
Code Attributes to Learn Defect Predictors. [EEE Transactions on
Software Engineering, 33(1):2—13, January 2007.

Patrick Knab, Martin Pinzger, and Abraham Bernstein. Predicting
Defect Densities in Source Code Files with Decision Tree Learners.
In Proceedings of the 2006 International Workshop on Mining Software
Repositories, pages 119-125, New York, NY, USA, 2006. ACM.
Sunint K. Khalsa. A Fuzzified Approach for the Prediction of Fault
Proneness and Defect Density. In Proceedings of the World Congress
on Engineering, volume 1, pages 218-223, 2009.

S. Aljahdali and A.F. Sheta. Predicting the Reliability of Software
Systems Using Fuzzy Logic. In Proceedings of the Eighth International
Conference on Information Technology, pages 36—40, April 2011.
Ajeet Kumar Pandey and Neeraj Kumar Goyal. Fault Prediction Model
by Fuzzy Profile Development of Reliability Relevant Software Metrics.
International Journal of Computer Applications, 11(6):34—41, December
2010.

Q.P. Hu, M. Xie, S.H. Ng, and G. Levitin. Robust Recurrent Neural Net-
work Modeling for Software Fault Detection and Correction Prediction.
Reliability Engineering & System Safety, 92(3):332-340, 2007.

S.H. Aljahdali and M.E. El-Telbany. Software reliability prediction
using multi-objective genetic algorithm. In Proceedings of the 2009
IEEE/ACS International Conference on Computer Systems and Applica-
tions (AICCSA), pages 293-300, 2009.

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gard-
ner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary Algo-
rithms Made Easy. Journal of Machine Learning Research, 13:2171-
2175, Jul 2012.

Binh Pham and Ross Brown. Analysis of Visualisation Requirements
for Fuzzy Systems. In Proceedings of the Ist International Conference
on Computer Graphics and Interactive Techniques in Australasia and
South East Asia, pages 181-187, New York, NY, USA, 2003. ACM.

