
npm-miner: An Infrastructure for Measuring theQuality of the
npm Registry

Kyriakos C. Chatzidimitriou, Michail Papamichail, Themistoklis Diamantopoulos, Michail
Tsapanos, and Andreas L. Symeonidis

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece
{kyrcha, mpapamic, thdiaman, michael.tsapanos}@issel.ee.auth.gr, asymeon@eng.auth.gr

ABSTRACT
As the popularity of the JavaScript language is constantly increas-
ing, one of the most important challenges today is to assess the
quality of JavaScript packages. Developers often employ tools for
code linting and for the extraction of static analysis metrics in or-
der to assess and/or improve their code. In this context, we have
developed npn-miner, a platform that crawls the npm registry and
analyzes the packages using static analysis tools in order to extract
detailed quality metrics as well as high-level quality attributes, such
as maintainability and security. Our infrastructure includes an in-
dex that is accessible through a web interface, while we have also
constructed a dataset with the results of a detailed analysis for 2000
popular npm packages.

KEYWORDS
static analysis, software quality, javascript, npm

1 INTRODUCTION
A popular meme in the JavaScript (JS) community is that of Atwood,
stating that ‘Any application that can be written in JavaScript, will
eventually be written in JavaScript’1. And, indeed, the popularity
of JS is increasing, with the explosion of frameworks for building
server (Node.js), web (React, Vue.js, Angular, etc.), desktop (Elec-
tron), mobile applications (React Native, NativeScript, etc.), even
IoT solutions (Node-RED) predisposing for larger growth. Indica-
tively, a 2017 RedMonk survey2 places JS at the top position with
respect to the combination of GitHub pull requests and number of
tags in Stack Overflow questions, while Module Counts3 depicts
an exponential growth of npm modules (the package manager of
JS) against module repositories of other programming languages.
The npm repository is often seen as one of the JS revolutions4 that
brought JavaScript from ‘a language that was adding programming
capabilities to HTML’ into a full-blown ecosystem, with such a
rapid growth that terms like ‘JS (framework) fatigue’ have become
common among JS developers[13]. Obviously, such a growth of the
npm registry will have us conjecture that the quality and usefulness
of the packages will follow a Power Law5 or the Pareto Principle6,
making the identification of ‘good’ packages an essential task.

From a software development perspective, the use of linting
tools and static analysis metrics for software quality monitoring
has become a state-of-the-practice procedure, given the fact that

1https://blog.codinghorror.com/the-principle-of-least-power/
2http://redmonk.com/sogrady/2017/06/08/language-rankings-6-17/
3http://www.modulecounts.com/
4https://youtu.be/L-fx2xXSVso
5https://en.wikipedia.org/wiki/Power_law
6https://en.wikipedia.org/wiki/Pareto_principle

they provide valuable information regarding numerous source code
issues and vulnerabilities [8, 9, 14]. A major advantage of auto-
mated static analysis tools (ASAT) is that they enable discovering
crucial refactoring opportunities from the very first stage of the
software development process, where less man effort/development
cost is required [7]. According to recent studies [3], this fact is even
more prominent in dynamically-typed languages like JS, which
are considered to be highly error-prone, given that they do not
require programmers to follow any strict code-typing discipline
and thus are subject to accumulate technical debt in the form of
hidden bugs [11].

Against this background, we have built npm-miner, a platform
that continuously crawls the npm registry, analyzes the quality of its
packages against major quality characteristics such as maintainabil-
ity and security [6], and provides a search engine for developers to
query for specific npm packages and receive informative responses.
In addition, we have constructed a dataset with raw analysis results
for the 2000 most popular npm packages.

2 NPM-MINER ARCHITECTURE AND TOOLS
The complete npm-miner architecture is depicted in Figure 1. The
basic components of the platform are discussed next.

Data management layer. The database management system em-
ployed is a CouchDB7 and hosts two databases: a) one that mirrors
the npm’s registry database through continuous replication (this
way always having an updated snapshot of npm) and b) one that
stores the analysis results for each one of the processed packages. In
order to retrieve different representations of the database such as a
sorted list of GitHub repositories by the number of stars or statistics
about maintainability index results, CouchDB’s map-reduce design
views are used.

Workers. Two types of worker processes have been designed
for the system: the crawler and the analyzer process. The crawler
process is responsible for retrieving a batch of 500 packages from
the npm registry, at periodic intervals (1 hour) and publishing the
equivalent number of analyzing tasks to a message queue (Rab-
bitMQ). The analyzer processes continuously monitor the queue
for new messages, retrieve a message that contains information on
a specific package, download its source code and analyze it using
the JavaScript Static Analyzer (JSSA) module.

JSSA. The JSSA module is responsible for running five open
source static analysis tools. These are:

7http://couchdb.npm-miner.com:5984/_utils

https://blog.codinghorror.com/the-principle-of-least-power/
http://redmonk.com/sogrady/2017/06/08/language-rankings-6-17/
http://www.modulecounts.com/
https://youtu.be/L-fx2xXSVso
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Pareto_principle
http://couchdb.npm-miner.com:5984/_utils


CouchDB

escomplex

eslint
nsp

sonarjs
jsinspect Dataset

Queue
clone

Crawler

Analyzer

Analyzer

Analyzer

Dataset Constructor

Back-End

Front-End

...

Workers

JSSA

JSSA

JSSA

JSSA

GraphQL

Web App

User

Figure 1: npm-miner architecture overview.

• eslint8 (and a security plugin9), for finding linting issues.
• escomplex10, for measuring complexity.
• nsp (node security package)11, for identifying vulnerabilities
with dependencies.

• jsinspect12, for finding duplicate code snippets.
• sonarjs13, for applying rules the ‘Sonar way’.

Web application. The npm-miner web application14 is respon-
sible for allowing the user to search for a package and in return,
displays information about the package with respect to its quality
and popularity. The web application retrieves information from
three different resources, the REST API of the npm-miner’s Data-
base, which contains aggregated results of the analyses, the REST
API of GitHub, for up-to-date popularity metrics like stars, forks
and watchers, and the REST API of npms.io, another search engine
of npm that contains alternative quality, popularity and mainte-
nance metrics. The aggregation of the requests and responses is
performed through a GraphQL back-end. GraphQL ensures exten-
sibility, allowing easy integration of more external sources.

Dataset Constructor. The Dataset Constructor is responsible for
recreating the dataset presented in this paper. Given as input a
list of packages (specified in Section 4), the Dataset Constructor
retrieves their tarballs and runs the complete suite of static code
analyses. The list can obviously be modified to download other
npm packages and perform the same analyses.

3 NPM CRAWLING
In an open source and popular ecosystem like that of JavaScript and
the npm registry, there exist many problems that make crawling
and processing challenging, especially if one would like to follow a

8https://eslint.org
9https://github.com/nodesecurity/eslint-plugin-security
10https://github.com/escomplex/escomplex
11https://github.com/nodesecurity/nsp
12https://github.com/danielstjules/jsinspect
13https://github.com/SonarSource/sonarjs-cli
14http://npm-miner.com

systematic and pristine analysis process. Some of the typical prob-
lems encountered with the npm registry are: a) The declared GitHub
URL of a certain npm package leads to a not found page, b) The de-
clared GitHub URL of a certain npm package redirects to a different
(to the one declared) GitHub page (probably this is a maintenance
issue of the package.json file), c) many npm packages contain
copied-pasted popular open source projects with only the package
name changed in the package.json file, d) many npm packages
share the same GitHub repository and finally e) sometime the JSSA
fails or does not complete due to large or unexpected input. The
decisions we made in order to address these issues are presented
below:

• We store only the analysis of the latest version of each package.
This decision was made in order to avoid the exponential
growth of data in our infrastructure, which would have side-
tracked our research prototype into an industrial grade big
data solution. However, as the infrastructure becomes more
mature, we intend to include evolution analytics of the pack-
ages.

• We analyze only packages that have declared a GitHub repos-
itory in their package.json file, since we wanted to be able
to connect popularity (stars, forks, pull-requests) and qual-
ity metrics for research purposes. In addition, this helps us
filter out packages that their declared repository in GitHub
returns a 404 HTTP error (probably due to the repository be-
ing deleted or made private), driving us to the next decision.

• Packages whose GitHub repository was not found (404 error)
were filtered out from npm-miner.

• If there is a redirection after following the GitHub URL, the
inconsistency is detected and logged but the analysis contin-
ues. The inconsistency is detected by a mismatch between
the GitHub URL detected in the package.json and the final
GitHub URL in terms of user and repository names. We
continue with the analysis, since the package might have
changes and the package.json might have not been updated,
however still this constitutes a quality error.

2

npms.io
https://eslint.org
https://github.com/nodesecurity/eslint-plugin-security
https://github.com/escomplex/escomplex
https://github.com/nodesecurity/nsp
https://github.com/danielstjules/jsinspect
https://github.com/SonarSource/sonarjs-cli
http://npm-miner.com


• We exclude from the analysis the node_modules and dist
directories, which usually contain dependencies and built code.

• The linting package eslint is run with the same set of rules
for all packages, even if the package had its own linting file.
We used the recommended eslint rules15. This decision was
made in order to have a basis for comparing the packages
with respect to linting issues. In future work we plan to
include both analyses.

The npm-miner provides the following high-level information
and metrics for each npm package analyzed:

(1) The package.json of the package.
(2) The complete analysis of npms.io
(3) The star count of the GitHub repository
(4) File and directories statistics: number of files, minimum,

maximum and sum of directory depths for directories where
.js files are found.

(5) Error and warning counts of eslint.
(6) Aggregate complexity measures for the whole package us-

ing the escomplex package. More specifically we preserve
package-level measurements for first order density, change
cost, core size, average lines of code, cyclomatic complexity,
halstead effort, parameters, maintainability index, total lines
of physical code and total lines of logical code.

(7) Number of vulnerabilities found in package dependencies
by the nsp package.

(8) Number of linting errors in terms of security rules based on
the eslint-security-plugin.

(9) Number of code duplicates based on jsinspect.
(10) Number of rule violations based on sonarjs.

An example of such a record can be found at: http://couchdb.npm-
miner.com:5984/_utils/document.html?npm-packages/mapbox.

At themoment of writing this paper, the npm registry has 598,862
packages (stored in a 21.5GB database). Having applied our filtering
rules, the npm-miner has analyzed 279,342 packages so far (stored
in a 9.2GB database), with the total lines of code analyzed so far
being around 356 million. Given the npm-miner Workers’ node
capabilities, there is a processing throughput of around 0.3 packages
per second.

Table 1 summarizes certain statistics for some of the quality met-
rics employed. Extreme values are attributedmainly to the openness
and popularity of the registry and are handled appropriately.

Table 1: Statistical analysis of npm-miner findings

Metric Min Max Mean Std

Cyclomatic complexity 1 288,5 1,67 0.62
Maintainability index -119.33 171 125 16
eslint issues 0 766,991 181.63 2,780
nsp issues 0 162 0.52 2.70
Number of files 1 999 7.58 27
Number of lines 1 2,506,278 1,577 15,456.5
Number of dependencies 0 652 4.01 7.39

15https://eslint.org/docs/rules/

4 DATASET
Our dataset consists of 2000 packages residing in the top-starred
GitHub repositories. Upon performing static analysis (as mentioned
in Section 3), we discovered that many npm packages are merely
copy-paste of entire repositories of popular JS projects. To filter
out such packages and thus refrain from having duplicates and
false-positives in terms of high popularity, we have filtered out any
packages that have not yielded at least 1000 downloads from npm
in the last month.

As already mentioned, static analysis is performed on our dataset
using five different tools that provide the values of various metrics,
such as the widely used maintainability index (MI), along with
different coding violations grouped by their severity (e.g. minor,
major, critical etc.). We also perform duplicate code checking and
security analysis based on the dependencies of every project.

Table 2 provides aggregate information regarding the dataset,
while Figure 2 illustrates its structure. The dataset contains the
analysis results of the 2000 packages organized in chunks of 100
packages. The results are given in json format and are organized
in five different files, each corresponding to the output of the em-
ployed tool. The dataset also contains information for each package
(packages_info) extracted from CouchDB (see Section 3). The
dataset along with the corresponding code repository can be found
online.1617

Table 2: Dataset Statistics

Metric Value

Number of npm packages 2,000
Number of .js files analyzed 56,416
Lines of code analyzed 3,216,244
Total errors found 476,044
Total warnings found 279,046
Total size 112GB (1.15GB compressed)

5 IMPACT AND RESEARCH DIRECTIONS
Our dataset can be used to confront several interesting challenges
in current research. At first, given that it comprises a large set of
static analysis metrics, it could be useful for building and calibrat-
ing quality assessment models [2, 12]. Further research can also be
performed on the reusability of npm packages as perceived by devel-
opers. As the dataset offers information about the number of stars
and forks as well as the number of npm package downloads, it can
be used to investigate the correlation between package popularity
and quality [10], or even determine which are the quality charac-
teristics that constitute a package popular and more downloadable
by the community. In this context, one could find also answers
to interesting research questions, such as e.g. whether small yet
complex projects are more (re)usable [4] or whether packages with
proper documentation and/or code style are forked more often [1].

16Dataset: https://doi.org/10.5281/zenodo.1165550
17Repository: https://github.com/AuthEceSoftEng/msr-2018-npm-miner

3

http://couchdb.npm-miner.com:5984/_utils/document.html?npm-packages/mapbox
http://couchdb.npm-miner.com:5984/_utils/document.html?npm-packages/mapbox
https://eslint.org/docs/rules/
https://doi.org/10.5281/zenodo.1165550
https://github.com/AuthEceSoftEng/msr-2018-npm-miner


Packages 0 - 100

Packages 100 - 200

Packages 1900 - 2000

...

Dataset

List of Packages

Packages Info

Packages Info 0 - 100

Packages Info 100 - 200

Packages Info 1900 - 2000

...

Package #100

...

nsp

sonarjs

eslint

escomplex

jsinspect
Package #102

Package #199

...

Analysis
Results

Figure 2: Dataset internal structure.

Another interesting research direction is that of dependency
analysis. As our dataset stores the inter-dependencies among pack-
ages, one may apply social network analysis techniques and derive
metrics (e.g. PageRank), or even employ association analysis to
extract common patterns (e.g. find out packages that are more often
used together). For this purpose, our index further supports graph-
like queries, e.g. “Give me all the packages that are using ‘lodash3’
or ‘underscore’ and whose download count is more than 1000 down-
loads per week”. Statistical patterns may also be extracted through
crowdsourcing based on the abstract syntax trees provided by our
complexity analysis. For example, one can extract common pro-
gramming idioms by performing the analysis found in [5] for Ruby
in JavaScript. Last but not least, npm-miner can be used as a recom-
mendation engine for package quality, and thus allow developers to
find a high quality package when they are making a decision as to
which package to use. In that case, the star count maybe an effect
of bias and time and may not reflect the quality characteristics of
packages.

6 CONCLUSIONS
In this paper we presented npm-miner, a platform for mining the
npm registry of packages used in the JavaScript community, as well
as a dataset that contains analyses of 5 open source static analysis
tools for 2000 popular packages in terms of stars. Throughout the
creation of the dataset, we confronted several challenges in order
to filter out any poorly-formed candidate packages for analysis and
consider only useful packages. The result is a clean and complete
dataset that can be used to pursue several interesting research
questions, such as those outlined in Section 5.

As future work, we consider integrating more open source tools
in order to be able to lint different types of files (e.g. support Type-
Script via TSLint or JSON objects via JSONLint). Moreover, we plan
to scale our platform to also maintain the analyses of all past ver-
sions of packages and not only the latest ones. This would further
allow us to investigate the evolution of packages.

ACKNOWLEDGMENTS
Parts of this work have been supported by the European Union’s
Horizon 2020 research and innovation programme (project Mobile
Age - grant agreement No 693319). The authors would like to thank
GRNET for providing cloud resources to implement this project.

REFERENCES
[1] Karan Aggarwal, Abram Hindle, and Eleni Stroulia. 2014. Co-evolution of Project

Documentation and Popularity Within Github. In Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR 2014). ACM, New York, NY, USA,
360–363.

[2] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser. 2012. Stan-
dardized Code Quality Benchmarking for Improving Software Maintainability.
Software Quality Journal 20, 2 (June 2012), 287–307.

[3] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source
software. In Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER ’16), Vol. 1. IEEE, Piscataway, NJ, USA,
470–481.

[4] Valasia Dimaridou, Alexandros-Charalampos Kyprianidis, Michail Papamichail,
Themistoklis Diamantopoulos, and Andreas Symeonidis. 2017. TowardsModeling
the User-Perceived Quality of Source Code using Static Analysis Metrics. In
Proceedings of the 12th International Joint Conference on Software Technologies
(ICSOFT 2017). SciTePress, Setúbal, Portugal, 73–84.

[5] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S. Bernstein.
2014. Emergent, Crowd-scale Programming Practice in the IDE. In Proceedings of
the 32nd Annual ACM Conference on Human Factors in Computing Systems (CHI
’14). ACM, New York, NY, USA, 2491–2500.

[6] ISO25010. 2011. ISO/IEC 25010:2011. https://www.iso.org/obp/ui/#iso:std:iso-iec:
25010:ed-1:v1:en. (2011). [Online; accessed October 2017].

[7] Ciera Jaspan, I Chen, Anoop Sharma, et al. 2007. Understanding the value of
program analysis tools. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion. ACM, New
York, NY, USA, 963–970.

[8] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure
and Evolution of Package Dependency Networks. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR ’17). IEEE Press,
Piscataway, NJ, USA, 102–112.

[9] Raula Gaikovina Kula, Ali Ouni, Daniel M German, and Katsuro Inoue. 2017. On
the Impact of Micro-Packages: An Empirical Study of the npm JavaScript Ecosystem.
Technical Report. arxiv.

[10] Michail Papamichail, Themistoklis Diamantopoulos, and Andreas L. Symeonidis.
2016. User-Perceived Source Code Quality Estimation based on Static Analysis
Metrics. In Proceedings of the 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS 2016). IEEE Press, Piscataway, NJ, USA,
100–107.

[11] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type
inconsistency analysis for JavaScript. In Proceedings of the 37th International
Conference on Software Engineering (ICSE ’15), Vol. 1. IEEE, Piscataway, NJ, USA,
314–324.

[12] Miltiadis G. Siavvas, Kyriakos C. Chatzidimitriou, and Andreas L. Symeonidis.
2017. QATCH - An Adaptive Framework for Software Product Quality Assess-
ment. Expert Systems with Applications 86 (2017), 350 – 366.

[13] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories (MSR ’16). ACM, New York,
NY, USA, 351–361.

[14] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In Proceedings of the IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR) (MSR 2017). IEEE,
Piscataway, NJ, USA, 334–344.

4

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

	Abstract
	1 Introduction
	2 npm-miner Architecture and Tools
	3 npm Crawling
	4 Dataset
	5 Impact and Research Directions
	6 Conclusions
	Acknowledgments
	References

