
CodeCatch: Extracting Source Code Snippets from Online
Sources

Themistoklis Diamantopoulos, Georgios Karagiannopoulos, and Andreas L. Symeonidis
Electrical and Computer Engineering Dept.

Aristotle University of Thessaloniki
Thessaloniki, Greece

thdiaman@issel.ee.auth.gr, gkaragif@ece.auth.gr, asymeon@eng.auth.gr

ABSTRACT
Nowadays, developers rely on online sources to find example snip-
pets that address the programming problems they are trying to
solve. However, contemporary API usage mining methods are not
suitable for locating easily reusable snippets, as they provide usage
examples for specific APIs, thus requiring the developer to know
which library to use beforehand. On the other hand, the approaches
that retrieve snippets from online sources usually output a list of
examples, without aiding the developer to distinguish among dif-
ferent implementations and without offering any insight on the
quality and the reusability of the proposed snippets. In this work,
we present CodeCatch, a system that receives queries in natural
language and extracts snippets from multiple online sources. The
snippets are assessed both for their quality and for their useful-
ness/preference by the developers, while they are also clustered
according to their API calls to allow the developer to select among
the different implementations. Preliminary evaluation of CodeCatch
in a set of indicative programming problems indicates that it can
be a useful tool for the developer.

KEYWORDS
Code Reuse, Snippet Mining, API Usage Mining

1 INTRODUCTION
Lately, the outspread of the Internet and the adoption of the open-
source development paradigm have greatly influenced the way
software is developed. Nowadays, the first step towards solving a
coding issue, developing a component/algorithm or even integrat-
ing a library API is to search online for different possible solutions.
Several tools exist to retrieve such information, including search
engines, question-answering websites (e.g. Stack Overflow1), pro-
gramming forums (e.g. Code Project2), etc. In this context, modern
software development practices imply considerable effort in locat-
ing and integrating the solutions within these online sources of
information.

In this context of software reuse, new software systems are
usually built using components found in software libraries and inte-
grating them by means of small code fragments, called snippets. The
challenge for a developer following such a software development
practice is to find the proper snippets to perform the envisioned
tasks (e.g. read a CSV file, send a file over ftp, etc.) and integrate
them in his/her own source code. Using the tools mentioned in the
previous paragraph for this task is far from optimal, as it requires
leaving one’s IDE to navigate through several online pages, in an
1https://stackoverflow.com/
2https://www.codeproject.com/

attempt to comprehend the different ways to solve the problem
before selecting and integrating an implementation.

Various methodologies have been proposed to address this chal-
lenge, most of which focus on API usage mining and snippet mining.
API usage mining systems extract and present examples for specific
library APIs [4, 8, 11, 13, 18, 22]. Though effective, these systems
are only focused on finding out how to use an API, without provid-
ing solutions in generic cases or in cases when determining which
library to use is part of the question. Furthermore, several of them
[8, 18, 22] return call sequences instead of ready-to-use snippets.

On the other hand, generic snippet mining systems [3, 20, 21]
employ indexing mechanisms that include snippets for multiple
queries. Nevertheless, they also have important limitations. Con-
cerning systemswith local indexes [21], the quality and the diversity
of their results is usually confined by the size of the index. More-
over, the retrieved snippets for all systems [3, 20, 21] are presented
in the form of lists that do not allow easily distinguishing among
different implementations (e.g. using different libraries to perform
file management). The quality and the reusability of the results
are also usually not evaluated. Finally, a common limitation in cer-
tain systems is that they involve some specialized query language,
which may require additional effort by the developer.

In this work, we design and develop CodeCatch, a system that re-
ceives queries in natural language, and employs the Google search
engine to extract useful snippets from multiple online sources. Our
system further evaluates the readability of the retrieved snippets,
as well as their preference/acceptance by the developer community
using information from online repositories. Moreover, CodeCatch
performs clustering to group snippets according to their API calls,
allowing the developer to first select the desired API implementa-
tion and subsequently choose which snippet to use.

2 RELATEDWORK
As already mentioned, in this work we focus on source code rec-
ommendation systems and, specifically, on systems that receive
queries for solving specific programming tasks and recommend
source code snippets suitable for reuse in the developer’s source
code. Thus, in the following paragraphs, we analyze the different
approaches that have been proposed for this and for any similar
challenges.

Some of the first source code recommendation systems, such
as Prospector [12] or PARSEWeb [17], focused on the problem of
finding a path between an input and an output object in source
code. For Prospector [12], such paths are called jungloids and the
resulting program flow is called a jungloid graph. The tool is quite
effective for certain reuse scenarios and can also generate code.

https://stackoverflow.com/
https://www.codeproject.com/

However, it requires maintaining a local database, which may easily
become deprecated and thus its results are limited. A rather more
broad solution was offered by PARSEWeb [17], which employed
the Google Code Search Engine3 and thus the resulting snippets
were always up-to-date. Both systems, however, were limited to
cases where the developer knows exactly which API objects to use,
and he/she is only concerned with integrating them.

Another category of systems are those that generate API us-
age examples in the form of call sequences by mining client code
(i.e. code using the API under analysis). MAPO [22] is a represen-
tative case, which employs frequent sequence mining to identify
common usage patterns. As noted, however, by Wang et al. [18],
MAPO does not account for the diversity of usage patterns, and thus
outputs a large number of API examples, many of which are redun-
dant. To improve on this aspect, the authors propose UP-Miner [18],
a system that aims to achieve high coverage and succinctness. UP-
Miner models client source code using graphs and mines frequent
closed API call paths/sequences using the BIDE algorithm [19].
PAM [8] is another similar system that employs probabilistic ma-
chine learning to extract API call sequences, which are proven to be
more representative than those of MAPO and UP-Miner. An inter-
esting novelty of the relevant work [8] is the use of an automated
evaluation framework based on handwritten usage examples by
the developers of the API under analysis.

Apart from the aforementioned systems, which extract API call
sequences, there are also approaches that recommend ready-to-use
snippets. Indicatively, we refer to APIMiner [13], a system that
performs code slicing to isolate useful API-relevant statements of
snippets. Buse and Weimer [4] further employ path-sensitive data
flow analysis and pattern abstraction techniques to provide more
abstract snippets. Another important advantage of their implemen-
tation is that it employs clustering to group the resulting snippets
to categories. A similar system in this aspect is eXoaDocs [11], as
it also clusters snippets, however using a set of semantic features
proposed by the DECKARD code clone detection algorithm [9].
MUSE [14] also extracts API examples from client code and em-
ploys novel heuristics to rank them. Indicatively, the system defines
the ease of reuse for each example as the percentage of its object
types that belong to the library under analysis. The intuition behind
this metric is that custom object types may require importing other
third-party libraries and thus hinder reuse.

Though interesting, all of the aforementioned approaches pro-
vide usage examples for specific API methods, and do not address
the challenge of choosing which library to use. Furthermore, several
of these approaches output API call sequences, instead of ready-
to-use solutions in the form of snippets. Finally, none of the afore-
mentioned systems accepts queries in natural language, which are
certainly preferable when trying to formulate a programming task
without knowing which APIs to use beforehand.

To address the above challenges, several recent systems focus on
generic snippets. Some of them employ pattern-based code search
and rely on local indexes [10, 21], while others connect to online
search engines and further allow queries in natural language [3, 20].
Focusing on the latter, we may note BluePrint [3], a system offered

3The Google Code Search Engine resided in http://www.google.com/codesearch, how-
ever the service was discontinued in 2013.

as an Eclipse plugin. Blueprint employs the Google search engine
to discover and rank snippets, thus ensuring that useful results are
retrieved for almost any query. An even more advanced system is
Bing Code Search [20], which employs the Bing search engine for
finding relevant snippets, and further introduces a multi-parameter
ranking system for snippets as well as a set of transformations to
adapt the snippet to the source code of the developer. Finally, there
are also systems that search for snippets in a single data source,
such as e.g. Prompter [16], which recommends solutions from Stack
Overflow. However, the results of these systems are usually limited
when compared to those of the approaches that employ a full-scale
web search engine.

Though useful for extracting code snippets, the aforementioned
systems do not provide a choice of implementations to the developer.
Furthermore, most of them do not assess the retrieved snippets
both from a quality and from a reusability perspective. This is
crucial, as libraries that are most often preferred by developers
typically exhibit high quality and good documentation, while they
are obviously supported by a larger community [2, 15]. In this
work, we present CodeCatch, a snippet mining system designed to
overcome the above limitations. CodeCatch employs the Google
search engine in order to receive queries in natural language and
at the same time extract snippets from multiple online sources. As
opposed to current systems, our tool assesses not only the quality
(readability) of the snippets but also their reusability/preference
by the developers. Furthermore, CodeCatch employs clustering
techniques in order to group the snippets according to their API
calls, and thus allows the developer to easily distinguish among
different implementations.

3 CODECATCH SNIPPET RECOMMENDER
The architecture of CodeCatch is shown in Figure 1. The input is a
query given in natural language to theDownloader, which posts it to
the Google search engine, to extract snippets from the result pages.
Consequently, the Parser extracts the API calls of the snippets, while
the Reusability Evaluator scores the snippets according to whether
they are widely used/preferred by developers. Additionally, the
readability of the snippets is assessed by the Readability Evaluator.
Finally, the Clusterer groups the snippets according to their API
calls, while the Presenter ranks them and presents them to the
developer. These modules are analyzed in the following subsections.

3.1 Downloader
The Downloader receives as input the query of the developer in
natural language and posts it in order to retrieve snippets from
multiple sources. An example query used throughout this Section
is “How to read a CSV file”. The Downloader receives the query
and augments it before issuing it in the Google search engine. Note
that our methodology is programming language-agnostic; however,
and without loss of generality we focus in this paper on the Java
programming language. In order to ensure that the results returned
by the search engine will be targeted to the Java language, the
query augmentation is performed using the Java-related keywords
java, class, interface, public, protected, abstract, final, static, import,
if, for, void, int, long, and double. Similar lists of keywords can be
constructed for supporting other languages.

2

http://www.google.com/codesearch

Parser

Downloader
Snippets

Readability
Evaluator

Clusterer

Presenter
Query

Reusability
Evaluator

8 1 2

4

3

56

7

Search

Figure 1: CodeCatch system overview.

The URLs that are returned by Google are scraped using Scrapy4.
Upon retrieving the top 40 web pages, we extract text from HTML
tags such as: <pre>, and <code>. Scraping from those tags allows us to
gather the majority (around 92% as measured) of code content from
web pages. Apart from the code, we collect information relevant to
the webpage, including the URL, its rank at the Google results list,
and the relative position of each code fragment inside the page.

3.2 Parser
The snippets are then parsed using the parser described in [6],
which extracts the AST of each snippet and takes two passes over it,
one to extract all (non-generic) type declarations (including fields
and variables), and one to extract the method invocations (API
calls). Consider, for example, the snippet of Figure 2. In the first
pass, the parser extracts the declarations line: String, br: Buffere-
dReader, data: String[], and e: Exception. Then, upon removing the
generic declarations (i.e. literals, strings and exceptions), the parser
extracts the relevant method invocations, which are highlighted in
Figure 2. The caller of each invocation is replaced by its type (apart
from constructors for which types are already known), to finally
produce the API calls FileReader.__init__, BufferedReader.__init__,
BufferedReader.readLine, and BufferedReader.close.

String line = "";
BufferedReader br = null;
try {
br = new BufferedReader (new FileReader ("test.csv"));
while((line = br. readLine ()) != null) {
String[] data = line.split(",");

}
br. close ();

} catch (Exception e) {
System.err.println("CSV file cannot be read: " + e);

}

Figure 2: Example snippet for “How to read a CSV file”.

Note that the parser is quite robust even when the snippets are
not compilable, while it also effectively isolates API calls that are not
related to a type (since generic calls, such as e.g. close, would only
add noise to the invocations). Finally, any snippets not referring to
Java source code and/or not producing API calls are dropped.

4https://scrapy.org/

3.3 Reusability Evaluator
Upon gathering the snippets and extracting their API calls, the
next step is to determine whether they are expected to be of use
to the developer. In this context of reusability, we want to direct
the developer towards what we call common practice, and, to do
so, we make the assumption that snippets with API calls commonly
used by other developers are more probable to be of (re)use. This is
a reasonable assumption since answers to common programming
questions are prone to appear often in the code of different projects.
As a result, we designed the Reusability Evaluator by downloading
a set of high-quality projects and determining the amount of reuse
for the API calls of each snippet.

For this task we have downloaded the 1000 most popular Java
projects of GitHub, as determined by the number of stars assigned.
The rationale behind this choice of projects is highly intuitive and
is also strongly supported by current research; popular projects
have been found to exhibit high quality [15], while they contain
reusable source code [7] and sufficient documentation [2]. As a
result, we expect that these popular projects use the most effective
APIs and in a good way.

Upon downloading the projects, we construct a local index where
we store their API calls, which are extracted using the Parser. After
that, we score each API call by dividing the number of projects
in which it is present by the total number of projects. For the
score of each snippet, we average over the scores of its API calls.
Finally, the index also contains all qualified names so that we
may easily retrieve them given a caller object (e.g. BufferedReader:
java.io.BufferedReader).

3.4 Readability Evaluator
To construct a model for the readability of snippets, we used the
publicly available dataset from [5] that contains 12,000 human
judgements by 120 annotators on 100 snippets of code. We build
our model as a binary classifier that assesses whether a code snippet
ismore readable or less readable. At first, for each snippet, we extract
a set of features that are related to readability, including e.g. the
average identifier length, the average number of comments, etc.
(see [5] for the full list of features). After that, we train an AdaBoost
classifier on the aforementioned dataset. The classifier was built
with decision trees as base estimator, while the number of estima-
tors and the learning rate were set to 160 and 0.6, respectively. We
built our model using 10-fold cross-validation and the average F-
measure for all folds was 85%, indicating that it is effective enough
for determining whether a new snippet has high readability.

3

https://scrapy.org/

2 3 4 5 6 7 8
Number of Clusters

0.55

0.60

0.65

0.70

0.75

Av
er

ag
e

Si
lh

ou
et

te
 V

al
ue

s

(a)

0.2 0.0 0.2 0.4 0.6 0.8
Silhouette Coefficient Values

Cl
us

te
r L

ab
el

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

(b)

Figure 3: Example silhouette analysis for clustering the snippets of query “How to read a CSV file”, including (a) the silhouette
score for different number of clusters and (b) the silhouette of each of the 5 clusters.

3.5 Clusterer
Upon scoring the snippets, the next step is to cluster them. A simple
approachwould be to cluster the snippets by examining them as text
documents; however this approach would fail to distinguish among
different implementations. Consider, for example, the snippet of
Figure 2 along with that of Figure 4. If we remove any punctuation
and compare the two snippets, we may find out that more than 60%
of the tokens of the second snippet are also present in the first. The
two snippets, however, are quite different; they have different API
calls and thus refer to different implementations.

Scanner scanner = null;
try{
scanner = new Scanner (new File ("test.csv"));
scanner.useDelimiter(",");
while(scanner. hasNext ()) {
System.out.print(scanner. next () + " ");

}
scanner. close ();

} catch (Exception e) {
System.err.println("CSV file cannot be read: " + e);

}

Figure 4: Example snippet for “How to read a CSV file”.

As a result, we cluster snippets based on their API calls. To do so,
we employ a vector space model to represent snippets as documents
and API calls as vectors (dimensions). At first, we construct a docu-
ment for each snippet. For example, the document for the snippet
of Figure 2 is “FileReader.__init__ BufferedReader.__init__ Buffere-
dReader.readLine BufferedReader.close”, while the document for
that of Figure 4 is “File.__init__ Scanner.__init__ Scanner.hasNext
Scanner.next Scanner.close”. After that, we use a tf-idf vectorizer
to extract the vector representation for each document. The weight
(vector value) of each term t in a documentd is computed as follows:

t f id f (t ,d,D) = t f (t ,d) · id f (t ,D) (1)

where t f (t ,d) is the term frequency of term t in document d and
refers to the appearances of the API call in the snippet, while
id f (t ,D) is the inverse document frequency of term t in the set of
all documents D, referring to how common the API call is in all the
snippets. In specific, id f (t ,D) is equal to 1+ loд((1+ |D |)/(1+dt)),
where |dt | is the number of documents containing the term t , i.e. the
number of snippets containing the relevant API call. The idf ensures
that very common calls (e.g. Exception.printStackTrace) are given
low weights, so that they do not outweigh more decisive ones.

Before clustering, we also need to define a distance metric that
shall be used to measure the similarity between two vectors. Our
measure of choice is the cosine similarity, which is defined for two
document vectors d1 and d2 using the following equation:

cos_similarity(d1,d2) =
d1 · d2
|d1 | · |d2 |

=

∑N
1 wti ,d1 ·wti ,d2∑N

1 w2
ti ,d1

·
∑N
1 w2

ti ,d2

(2)

wherewti ,d1 andwti ,d2 are the tf-idf scores of term ti in documents
d1 and d1 respectively, and N is the total number of terms.

We select K-Means as our clustering algorithm, as it is known
to be effective in text clustering problems similar to ours [1]. The
algorithm, however, still has an important limitation as it requires
as input the number of clusters. To automatically determine the best
value for the number of clusters, we employ the silhouette metric.
The silhouette was selected as it is a metric that encompasses both
the similarity of the snippets within the cluster (cohesion) and
their difference with the snippets of other clusters (separation). We
execute K-Means for 2 to 8 clusters, and each time compute the
value of silhouette for each document (snippet) as follows:

silhouette(d) =
b(d) − a(d)

max(a(d),b(d))
(3)

where a(d) is the average distance of document d from all other doc-
uments in the same cluster, while b(d) is computed by measuring
the average distance of d from the documents of each of the other
clusters and keeping the lowest one of these values (each corre-
sponding to a cluster). For both parameters, the distances between
documents are measured using equation (2). Finally, the silhouette

4

(a)

(b)

Figure 5: Screenshots of CodeCatch for “How to read a CSVfile”, depicting (a) the top three clusters, and (b) an example snippet.

coefficient for a cluster is given as the mean of the silhouette values
of its snippets, while the total silhouette for all clusters is given by
averaging over the silhouette values of all snippets.

An example silhouette analysis for the query “How to read a CSV
file” is shown in Figure 3. Figure 3a depicts the silhouette score for 2
to 8 clusters, where it is clear that the optimal number of clusters is
5. Furthermore, the individual silhouette values for the documents
(snippets) of the five clusters are shown in Figure 3b, and they also
confirm that the clustering is effective as most samples exhibit high
silhouette and only a few have marginally negative values.

3.6 Presenter
The Presenter handles the ranking and the presentation of the
results. As an important aspect of this work is to present the snip-
pets in an optimal manner, we have developed a prototype user
interface as a web application that can be accessed at the URL
http://codecatch.ee.auth.gr. An example screenshot of the web ap-
plication for the query “How to read a CSV file” is shown in Figure 5.

When the developer inserts a query, he/she is first presented with
the clusters that correspond to different implementations for the
query. An indicative view of the first three clusters containing CSV
file reading implementations is shown in Figure 5a. The proposed
implementations include the BufferedReader API (e.g. as in Figure 2),

the Scanner API (e.g. as in Figure 4), and the Java CSV reader API5.
The clusters are ordered according to their API reusability score,
which is the average of the score of each of their snippets, as defined
in subsection 3.3. For each cluster, CodeCatch provides the 5 most
frequent API imports and the 5 most frequent API calls, to aid
the developer to distinguish among the different implementations.
In cases where imports are not present in the snippets, they are
extracted using the index created in subsection 3.3.

Upon selecting to explore a cluster, the developer is presented
with a list of its snippets. The snippets within a cluster are ranked
according to their API reusability score, and in cases of equal scores
according to their distance from the cluster centroid (computed
using equation (2)). This ensures that the most common usages of
a specific API implementation are higher on the list. Furthermore,
for each snippet, CodeCatch provides useful information, as shown
in Figure 5b, including its reusability score (API Score), its distance
from the centroid, its readability (either Low or High), the position
of its URL in the results of and its order inside the URL, its number
of API calls, and its number of lines of code. Finally, apart from
immediately reusing the snippet, the developer has the option to
isolate only the code that involves its API calls, while he/she can
also check the webpage from which the snippet was retrieved.

5https://gist.github.com/jaysridhar/d61ea9cbede617606256933378d71751

5

http://codecatch.ee.auth.gr
https://gist.github.com/jaysridhar/d61ea9cbede617606256933378d71751

4 EVALUATION
4.1 Evaluation Framework
Comparing CodeCatch with similar approaches has not been per-
formed in a straightforward manner, as several of them focus on
mining single APIs, while others are not maintained and/or are not
publicly available. Our focus is mainly on the merit of reuse for
results, and the system that is most similar to ours is Bing Code
Search [20], however it targets the C# language. Hence, we have de-
cided to perform a reusability-related evaluation against the Google
search engine on a dataset of common queries shown in Table 1.

Table 1: Statistics of the Queries used as Evaluation Dataset.

ID Query Clusters Snippets

1 How to read CSV file 5 76
2 How to generate MD5 hash code 5 65
3 How to send packet via UDP 5 34
4 How to split string 4 22
5 How to play audio file 6 45
6 How to upload file to FTP 4 31
7 How to initialize thread 6 51
8 How to connect to a JDBC database 5 42
9 How to read ZIP archive 6 82
10 How to send email 5 79

The purpose of our evaluation is twofold; we wish not only to
assess whether the snippets are relevant, but also to determine
whether the developer can indeed more easily find snippets for all
relevant APIs. At first, we annotate the retrieved snippets for all
the queries as relevant and non-relevant. To maintain an objective
and systematic outlook, the annotation procedure was performed
without any knowledge on the ranking of the snippets, while it was
also kept as simple as possible; snippets were marked as relevant
if and only if their code covers the functionality described by the
query. That is, for the query, e.g. “How to read CSV file”, any snip-
pets used to read a CSV file were considered relevant, regardless of
their size or complexity, and of any libraries involved, etc.

As already mentioned, the snippets are assigned to clusters,
where each cluster involves different API usages and thus corre-
sponds to a different implementation. As a result, we have to assess
the relevance of the results per cluster, hence assuming that the
developer would first select the desired implementation and then
navigate into the cluster. To do so, we compare the snippets of each
cluster (i.e. of each implementation) to the results of the Google
search engine. CodeCatch clusters already provide lists of snippets,
while for Google we construct one by assuming that the developer
opens the first URL, subsequently examines the snippets of this
URL from top to bottom, then he/she opens the second URL, etc.

When assessing the results, we wish to find snippets that are
relevant not only to the query but also to the corresponding API
usages. As a result, for the assessment of each cluster, we further
annotate the results of both systems to consider them relevant
when they are also part of the corresponding implementation. This,
arguably, produces less effective snippet lists for the Google search
engine, however note that our purpose is not to challenge the results

of Google search in terms of relevance to the query, but rather to
illustrate how easy or hard it is for the developer to examine the
results and isolate the different ways of answering his/her query.

For each query, upon having constructed the lists of snippets for
each cluster and for Google, we compare them using the reciprocal
rank metric. This metric was selected as it is commonly used to
assess information retrieval systems in general and also systems
similar to ours [20]. Given a list of results, the reciprocal rank for a
query is computed as the inverse of the rank of the first relevant
result. For example, if the first relevant result is in the first position,
then the reciprocal rank is 1/1 = 1, if the result is in the second
position, then the reciprocal rank is 1/2 = 0.5, etc.

4.2 Evaluation Results
Figure 6 depicts the reciprocal rank of CodeCatch and Google for
the snippets corresponding to the three most popular implemen-
tations for each query. At first, interpreting this graph in terms of
the relevance of the results indicates that both systems are very
effective. In specific, if we consider that the developer would require
a relevant snippet regardless of the implementation, then for most
queries, both CodeCatch and Google produce a relevant result in
the first position (i.e. reciprocal rank equal to 1).

If, however, we focus on the different implementations , we can
make certain interesting observations. Consider, for example the
first query (“How to read a CSV file”). If the developer requires the
most popular BufferedReader implementation (I1), both CodeCatch
and Google output a relevant snippet in the first position. Similarly,
if one wished to use the Scanner (I2) or the Java CSV reader (I3), our
system would return a ready-to-use snippet in the top of the second
cluster or in the second position of the third cluster (i.e. reciprocal
rank equal to 0.5). On the other hand, using Google would require
examining more results (3 and 50 results for I2 and I3 respectively,
as the corresponding reciprocal ranks are equal to 0.33 and 0.02
respectively). Similar conclusions can be drawn for most queries.

Another important point of comparison of the two systems is
whether they return the most popular implementations at the top
of their list. CodeCatch is clearly more effective than Google in this
aspect. Consider, for example, the sixth query; in this case, the most
popular implementation is found in the third position of Google,
while the snippet found in its first position corresponds to a less
popular implementation. This is also clear in several other queries
(i.e. queries 2, 3, 7, 10). Thus, one could argue that CodeCatch does
not only provide the developer with all different API implementa-
tions for his/her query but also further aids him/her to select the
most popular of them, which is usually the most preferable.

Finally, we refer to the mean reciprocal rank, computed as the
average of all scores for each system. The mean reciprocal ranks
for CodeCatch and Google are 0.754 and 0.379 respectively. Their
difference is clearly significant (a paired t-test gave t = 6.116 and
p = 1.157 · 10−5), however note that the scope of this work is to
identify different implementations and thus these averages do not
measure overall relevance; instead, they measure implementation-
specific relevance (see subsection 4.1)6.
6Several other metrics have also been possible to compute, such as the mean average
precision (0.754 and 0.379 for CodeCatch and Google respectively) or the normalized
discounted cumulative gain (0.843 and 0.487 for CodeCatch and Google respectively).
However, these also lie outside the main scope and thus their analysis is omitted.

6

I1 I2
Query 1

I3 I1 I2
Query 2

I3 I1 I2
Query 3

I3 I1 I2
Query 4

I3 I1 I2
Query 5

I3 I1 I2
Query 6

I3 I1 I2
Query 7

I3 I1 I2
Query 8

I3 I1 I2
Query 9

I3 I1 I2
Query 10

I3
0.0

0.2

0.4

0.6

0.8

1.0

Re
cip

ro
ca

l R
an

k

CodeCatch
Google

Figure 6: Reciprocal Rank of CodeCatch and Google for the three most popular implementations (I1, I2, I3) of each query.

5 CONCLUSION
Although several snippet mining systems have been developed,
they typically return lists of snippets without distinguishing among
the usage of different APIs and without providing information as
to the reusability and readability of the snippets. In this work, we
proposed a system that extracts snippets from online sources and
further assesses their readability as well as their reusability based
on the preference of developers. CodeCatch further provides a
comprehensive view of the retrieved snippets by grouping them
into clusters that correspond to different implementations.

Future work on CodeCatch lies in several directions. At first, we
may extend our ranking scheme to include e.g. the position of each
snippet’s URL in the Google results, etc. Furthermore, different
methodologies can be tested for the readability evaluator in order
to assess its performance on new snippets. Finally, an interesting
idea would be to conduct a developer study in order to further
assess CodeCatch for its effectiveness in retrieving useful code
snippets. By setting up certain development tasks, we could also
assess whether the proposed snippets can be easily integrated into
the source code of the developer.

REFERENCES
[1] Charu C. Aggarwal and ChengXiang Zhai. 2012. A Survey of Text Clustering

Algorithms. Springer US, Boston, MA, 77–128.
[2] Karan Aggarwal, Abram Hindle, and Eleni Stroulia. 2014. Co-evolution of Project

Documentation and Popularity Within Github. In Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR ’14). ACM, New York, NY, USA,
360–363.

[3] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’10). ACM, New York, NY, USA, 513–522.

[4] Raymond P. L. Buse andWestleyWeimer. 2012. Synthesizing API Usage Examples.
In Proceedings of the 34th International Conference on Software Engineering (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 782–792.

[5] Raymond P. L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Trans. Softw. Eng. 36, 4 (2010), 546–558.

[6] Themistoklis Diamantopoulos and Andreas L. Symeonidis. 2015. Employing
Source Code Information to Improve Question-answering in Stack Overflow. In
Proceedings of the 12th Working Conference on Mining Software Repositories (MSR
’15). IEEE Press, Piscataway, NJ, USA, 454–457.

[7] Valasia Dimaridou, Alexandros-Charalampos Kyprianidis, Michail Papamichail,
Themistoklis Diamantopoulos, and Andreas Symeonidis. 2017. TowardsModeling
the User-Perceived Quality of Source Code using Static Analysis Metrics. In
Proceedings of the 12th International Joint Conference on Software Technologies
(ICSOFT 2017). SciTePress, Setúbal, Portugal, 73–84.

[8] Jaroslav Fowkes and Charles Sutton. 2016. Parameter-free probabilistic API
mining across GitHub. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 254–265.

[9] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In
Proceedings of the 29th International Conference on Software Engineering (ICSE
’07). IEEE Computer Society, Washington, DC, USA, 96–105.

[10] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code Ex-
amples. In Proceedings of the 36th International Conference on Software Engineering
(ICSE ’14). ACM, New York, NY, USA, 664–675.

[11] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. 2010. Towards
an Intelligent Code Search Engine. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI ’10). AAAI Press, Palo Alto, CA, USA, 1358–1363.

[12] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
Mining: Helping to Navigate the API Jungle. SIGPLAN Not. 40, 6 (2005), 48–61.

[13] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
2013. Documenting APIs with examples: Lessons learned with the APIMiner
platform. In Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE 2013). IEEE Computer Society, Piscataway, NJ, USA, 401–408.

[14] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press,
Piscataway, NJ, USA, 880–890.

[15] Michail Papamichail, Themistoklis Diamantopoulos, and Andreas L. Symeonidis.
2016. User-Perceived Source Code Quality Estimation based on Static Analysis
Metrics. In Proceedings of the 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS 2016). IEEE Press, Piscataway, NJ, USA,
100–107.

[16] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR ’14). ACM, New York, NY, USA, 102–111.

[17] Suresh Thummalapenta and Tao Xie. 2007. PARSEWeb: A Programmer Assistant
for Reusing Open Source Code on the Web. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’07). ACM, New
York, NY, USA, 204–213.

[18] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. 2013. Mining succinct and high-coverage API usage patterns from source
code. In Proceedings of the 10thWorking Conference onMining Software Repositories
(MSR ’13). IEEE Press, Piscataway, NJ, USA, 319–328.

[19] Jianyong Wang and Jiawei Han. 2004. BIDE: Efficient Mining of Frequent Closed
Sequences. In Proceedings of the 20th International Conference on Data Engineering
(ICDE ’04). IEEE Computer Society, Washington, DC, USA, 79–90.

[20] Yi Wei, Nirupama Chandrasekaran, Sumit Gulwani, and Youssef Hamadi. 2015.
Building Bing Developer Assistant. Technical Report MSR-TR-2015-36. Microsoft
Research.

[21] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. 2012. SnipMatch: Using
Source Code Context to Enhance Snippet Retrieval and Parameterization. In
Proceedings of the 25th Annual ACM Symposium on User Interface Software and
Technology (UIST ’12). ACM, New York, NY, USA, 219–228.

[22] Tao Xie and Jian Pei. 2006. MAPO: Mining API Usages from Open Source
Repositories. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR ’06). ACM, New York, NY, USA, 54–57.

7

	Abstract
	1 Introduction
	2 Related Work
	3 CodeCatch Snippet Recommender
	3.1 Downloader
	3.2 Parser
	3.3 Reusability Evaluator
	3.4 Readability Evaluator
	3.5 Clusterer
	3.6 Presenter

	4 Evaluation
	4.1 Evaluation Framework
	4.2 Evaluation Results

	5 Conclusion
	References

