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Abstract—The current state of practice dictates that in order to
solve a problem encountered when building software, developers
ask for help in online platforms, such as Stack Overflow. In this
context of collaboration, answers to question posts often undergo
several edits to provide the best solution to the problem stated.
In this work, we explore the potential of mining Stack Overflow
answer edits to extract common patterns when answering a
post. In particular, we design a similarity scheme that takes
into account the text and code of answer edits and cluster edits
according to their semantics. Upon applying our methodology,
we provide frequent edit patterns and indicate how they could
be used to answer future research questions. Our evaluation
indicates that our approach can be effective for identifying
commonly applied edits, thus illustrating the transformation path
from the initial answer to the optimal solution.

Index Terms—code evolution, code snippets, Stack Overflow

I. INTRODUCTION

Nowadays, developers collaborate in online forums and
question-answering communities in order to share their ideas
and confront common challenges that may arise when writing
source code. Stack Overflow, which is currently one of the
most popular communities, hosts at the time of writing this
paper 17 million questions from more than 10 million users1.
These questions may refer to different scenarios, including
queries about how to use APIs, exceptions thrown when
writing code, questions about the usage of libraries, etc.

When these scenarios are interesting and generic enough for
many developers, they are usually answered collaboratively by
multiple community members, who strive to provide reusable
answers. To quote Jeff Atwood, one of the creators of Stack
Overflow, the goal of the community is not ‘answer my
question’ but ‘let’s collaboratively build an artifact that will
benefit future coders’ [1]. According to the guidelines of Stack
Overflow2, an answer is considered satisfactory if it is well
formatted, covers the original question, includes links (when
relevant) for those willing to do more research on the topic,
and refers to the topic as a whole (including any limitations of
the answer). Apart from the above, another crucial guideline
is that members are encouraged to post partial answers and
of course to edit answers (either third-party or their own) in
order to find the optimal solution to the posted problem.

This collaborative paradigm is what makes Stack Overflow
so broadly appealing. Answers are viewed as artifacts that are

1https://stackexchange.com/sites
2https://stackoverflow.com/help/how-to-answer

originally created to cover some question criteria and evolve
into generic solutions. And these artifacts may have more
or less the same strengths or weaknesses of any software
engineering artifact; they may be of high or low quality, the
surrounding text/comments can be well explanatory or even
not exist, the code may include error handling (and/or test
for corner cases), etc. These are all problems resolved via
answer evolution. Multiple members may view an answer
that has potential in solving a specific problem, and edit it
to improve it. This process is currently taking place in an
expert-based manner as it depends mainly on what we may
call the knowledge of the community. One may argue that this
knowledge could be harnessed to provide better understanding
of how Stack Overflow works and enable semi-automated
answer evolution.

In this work, we explore the potential of mining Stack
Overflow answers and focus particularly on their evolution
over consecutive edits. We design a similarity scheme for
answer edits that takes into account the characteristics of the
text and the embedded code snippets. Upon using our scheme,
we apply clustering in order to extract frequent edit patterns
that illustrate how initial answers evolve into optimal solutions
and represent best practices for evolving software artifacts.

II. DATA EXTRACTION AND PREPROCESSING

Our methodology is applied on the SOTorrent dataset [2],
which is a relational database built to analyze the evolution of
Stack Overflow posts. SOTorrent provides access to all posts
(table Posts), along with their history both as a whole (table
PostHistory) and at the level of individual text or code blocks
(table PostBlockVersion) [3]. We have focused on Java posts
(determined by the “java” tag) as a proof of concept for our
methodology, which however is mostly language-agnostic.

We first created a view for all answer edits by joining Posts,
PostHistory and PostBlockVersion and selecting only answers
(i.e. field PostTypeId equal to 2). After that, we extracted the
text and code snippets of all answer edits by performing a
semi-join between PostBlockVersion and our newly created
view. We added to the result (using UNION) the ids, texts and
code snippets of the original answer posts. The final result set
has edits with fields IdBefore, IdAfter, Comment, TextBefore,
TextAfter, CodeBefore, CodeAfter, where IdBefore and IdAfter
are the ids of the post before and after the edit respectively,
Comment is the comment of the edit, TextBefore and TextAfter

https://stackexchange.com/sites
https://stackoverflow.com/help/how-to-answer


Version 1
This is how you can read a text file in Java:

String content;
try (FileReader reader = new FileReader(file)) {
    char[] chars = new char[(int) file.length()];
    reader.read(chars);
    content = new String(chars);
} catch (IOException e) {
    e.printStackTrace();
}

Version 2 - Added comment about the standard library
This is how you can read a text file in Java using only the standard library:

String content;
try (FileReader reader = new FileReader(file)) {
    char[] chars = new char[(int) file.length()];
    reader.read(chars);
    content = new String(chars);
} catch (IOException e) {
    e.printStackTrace();
}

Version 3 - Put file outside the block
Suppose you are given a file named foo.txt

This is how you can read a text file in Java using only the standard library:

String content;
File file = new File("foo.txt");
try {
    FileReader reader = new FileReader(file);
    char[] chars = new char[(int) file.length()];
    reader.read(chars);
    content = new String(chars);
} catch (IOException e) {
    e.printStackTrace();
}

Version 4 - Fix to close the file reader
Suppose you are given a file named foo.txt

This is how you can read a text file in Java using only the standard library:

String content;
File file = new File("foo.txt");
try {
    FileReader reader = new FileReader(file);
    char[] chars = new char[(int) file.length()];
    reader.read(chars);
    content = new String(chars);
    reader.close();
} catch (IOException e) {
    e.printStackTrace();
}

Fig. 1. Example Stack Overflow answer post and subsequent versions (edits are highlighted) for a question about reading a text file

is the text before and after the edit, and CodeBefore and
CodeAfter is the code before and after the edit.

Upon executing the above queries, we have generated a set
of answer posts and their corresponding versions, which are
the results of subsequent edits. An example answer post that
shall be used throughout our analysis is shown in Figure 1.
Version 1 is originally posted as an answer to a question about
reading the content of a text file. Version 2 has a text addition,
which clarifies that the advantage of this solution is that it does
not require any external library other than the built-in standard
library of Java. Versions 3 and 4 improve the code snippet of
the post, by declaring the (possibly forgotten) file variable and
by closing the reader buffer, respectively.

In this example the edits are well documented (comments
are shown above the posts) and succeed one another. This is
not the norm in the dataset, as there are many cases where
no comments are provided by the editor or multiple changes
are made in the same edit. However, this example is indicative
of what one may expect to extract from the edits. Ideally, we
would want to keep track of scenarios such as the ones shown
in this Figure, i.e. forgotten dependency definitions, missing
declarations, buffers that do not close, and similar.

Our goal is to build a similarity scheme (see next Section)
that shall compare edits to one another. Thus, the first step is
to create a collection of edits. We represent each edit as a set
that contains its comment, the text of the answer before the
edit, the difference (additions and deletions) between the text
before and after the edit, the code of the answer before the
edit, and the difference (additions and deletions) between the
code before and after the edit. The differences were computed
per line using the difflib module of the Python standard library.

III. A SIMILARITY SCHEME FOR EVOLVING ANSWERS

Upon having created the dataset of edits, we applied a
similarity scheme for comparing them, based on text (for
comment and answer text) and code (for answer snippets) data.

A. Text Matching
The similarity between two fragments of text, either com-

ments or answer texts, is computed using the term frequency-
inverse document frequency (tf-idf). At first, we split text into
tokens3 and then apply stemming and remove any stopwords4.
After that we employ tf-idf to construct a vector space model,
where each term/token is a dimension of the model and each
text/comment is a document of the model. The term frequency
in each document is computed as the square root of the
number of times the term appears in the document, while
the inverse document frequency is computed as the logarithm
of the total number of documents divided by the number of
documents that contain the term. We created two models,
one for comments and one for texts5. The score between two
comments/texts is the cosine similarity between them:

tsim(c1, c2) =
c1 · c2
|c1| · |c2|

=

∑N
1 wti,c1 · wti,c2∑N

1 w2
ti,c1 ·

∑N
1 w2

ti,c2

(1)

where c1, c2 are the two comments/texts, and wti,dj
is the

tf-idf score of token ti in the cj .

3As we focus on Java, we also split CamelCase tokens using the regex
.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)
to ensure that terms such as List and ArrayList are properly linked.

4We used the English stopword list of NLTK [4].
5For both models, to reduce dimensionality we dropped any terms appearing

in more than 50% of the documents (as too generic) as well as any terms
appearing in less than 10 documents (as too specific).



B. Snippet Matching

Matching snippets requires using representations that de-
scribe their terms and their structure. At first, we treat the code
as bag-of-words and apply the methodology of the previous
subsection in order to determine edits in a fine-grained (token-
based) manner. Though useful, this representation on its own
is not enough, as it does not capture the order of the code. On
the other hand, employing a representation such as the abstract
syntax tree (AST) is not optimal in the case of incomplete
snippets such as the ones in Figure 1. For instance, it is not
possible to employ heuristics between classes and methods, as
in [5], as there may not be any information about classes and
methods (e.g. inheritance, method declarations, etc.). Other
interesting approaches include extracting the snippet types [6],
[7] or even the API calls [8], [9]. However, the former
approaches are also missing structural information, while the
latter are limited to the API discovery problem, and thus do
not generalize to snippet similarity regardless of API calls.

Thus, we use as representation a sequence [10] generated by
three instruction types: assignments (AM), functions calls (FC),
and class instantiations (CI). More complex sequences are also
possible, e.g. as in [11], however they are not a good fit for our
problem since they lead to very specific patterns. On the other
hand, using only these instruction types leads to more abstract
representations, and thus we expect to extract more generic
patterns. We parse each snippet using the Eclipse compiler
and then pass two times over the extracted instructions. During
the first pass, we extract code declarations (i.e. classes, fields,
methods, and variables), while during the second pass we
create a sequence of commands for the snippet. For example,
the command ‘File file = new File(“foo.txt”)’ provides an item
CI_File. In the case of function calls, we keep the return
type of the call (or void if no type can be determined) as
types can be very helpful for identifying similar APIs [6], [7].
As an example, the sequence for the snippet of Version 4 of
Figure 1 is [CI_File, CI_FileReader, FC_char,
FC_void, CI_String, FC_void, FC_void].

We define a similarity metric between two code sequences
based on their Longest Common Subsequence (LCS). Given
two code sequences CS1 and CS2, their LCS is defined as the
longest subsequence of (not necessarily consecutive) elements
that is common to both sequences. For example, let CS1 be the
code sequence extracted above for Version 4 of the snippet of
Figure 1 and CS2 be the code sequence extracted for Version
1 of the same snippet ([CI_FileReader, FC_char,
FC_void, CI_String, FC_void]), the LCS of CS1

and CS2 is [CI_FileReader, FC_char, FC_void,
CI_String, FC_void]. The LCS is computed using dy-
namic programming, resulting in complexity equal to the
product of the lengths of the sequences [12]. Finally, the score
between the two snippets is computed as follows:

csim(CS1, CS2) = 2 · |LCS(CS1, CS2)|
|CS1|+ |CS2|

(2)

As the length of the LCS of two sequences is always smaller
than the length of the smallest sequence, the result of the above

equation lies in the range [0, 1]. As an example, the score for
the snippets of Version 4 and Version 1 of Figure 1 (CS1 and
CS2, respectively) is 2 · 5/(7 + 5) = 10/12 = 0.833.

Finally, given two answer edits X and Y , their similarity
is computed as the average of six similarity scores: the scores
of their text differences (tsim(TextAdditionsX , T extAd-
ditionsY ), tsim(TextDeletionsX , T extDeletionsY )), the
scores of their code computed using the bag-of-words
representation (tsim(CodeAdditionsX , CodeAdditionsY ),
tsim(CodeDeletionsX , CodeDeletionsY )), and the scores
of their snippets computed using sequences (csim(Sequence-
AdditionsX , SequenceAdditionsY ), csim(SequenceDele-
tionsX , SequenceDeletionsY )). Note that we do not add
comment data in this similarity score, as it will be used as
external optimization in the following Section.

IV. EXTRACTING ANSWER EVOLUTION PATTERNS

The next step is to use our similarity scheme to create
a distance matrix that contains the distance (computed as
1−similarity) between each pair of answer edits in the dataset.
At first, the complexity may seem quite large; given N edits,
we need to compute N(N−1)/2 values for the upper triangu-
lar part of the matrix. However, the problem we are trying to
solve is edit pattern recognition, and thus we do not need the
full matrix, but rather certain parts of it, i.e. values of posts
that contain code (to assess our code mining methodology) and
may lead to useful patterns. As a result, we first filtered the
edits and kept only those with at least one changed instruction
(i.e. max(SequenceAdditions, SequenceDeletions) ≥ 1).
Moreover, for optimization reasons (see next subsection), we
dropped any edits that did not have any meaningful comments
(e.g. edits with less than 10 characters or edits with default
comments produced by Stack Overflow, such as ‘Added #
characters in body’). This preprocessing produced 20667 edits.
The resulting distance matrix would then have more than 200
million values, however we noticed that most of them were
too different from each other to form patterns, therefore we
kept only the 100 most similar edits for each edit resulting in a
more manageable sparse matrix with 822156 non-zero values.

A. Clustering Answer Edits

Although there are several approaches for clustering source
code sequences [13]–[16], these approaches focus on the API
call extraction problem, and thus they cannot be applied on
datasets including both text and snippets. Using our methodol-
ogy, on the other hand, we obtain a distance matrix, therefore
we are able to employ hierarchical clustering techniques.

We applied agglomerative hierarchical clustering with the
average (also known as UPGMA [17]) linkage method, which
was chosen as it is robust in cases with many outliers. The
next challenge that we had to confront was to determine
the optimal number of clusters. Ideally, it would be best
to have an annotated dataset with answer edits that indeed
represent similar functionality; this would be a ground truth
against which clustering could be optimized. As, however,
these annotations are not available (and handcrafting them



TABLE I
SAMPLE CLUSTERS WITH THEIR NUMBER OF POINTS (EDITS) AND THEIR 5 MOST REPRESENTATIVE COMMENTS

ID #Edits 5 Most Representative Comments

64 93 Changed code and added caveat(s), Changed from ArrayList to List in type declaration, Changed ArrayList to HashSet, changed the
inventoryItems to List interface, List instead of ArrayList

201 84 Changed code to use for each loop, Used for-each loop, Use Arrays.fill instead of loop., Updated to use ListIterator, label if panel pressed
156 68 changed to StringBuilder, changed out from String to StringBuilder, Replaced StringBuffer with StringBuilder., use StringBuilder instead

of StringBuffer, Changed it to StringBuilder form StringBuffer (see comments)
61 64 Added List’s initializer, Added Collection to List, added line to code, Avoid modifiying the list, I forgot to instantiate the ArrayList!
112 43 finished the code, Changed bool to boolean, changed bool to boolean, added code block, Copied code to IDE and noticed the ‘serverSocket’

variable was named incorrectly. Also, ‘bool’ is not valid Java. Should be ‘boolean’.
94 35 Added a check for nullness in Book constructor., added out of range check, changed exception types, it’s a little more intuitive, Added

range check to Constructor., Throw the right exception type
153 31 requires a toString, many thanks to hrickards, Forgot the toString(), I corret the “String s = (String) tv.getText();” to “String s =

tv.getText().toString();”, missed the toString(), should be toString()
107 29 properly implement equals, implementation of hashCode and equals, corrected equals signature, impl. of hashCode & equals, generic & sc
116 29 added scanner support, changed to scanner, declared Scanner outside loop, make less verbose, No need to create a new scanner everytime.
152 26 Edited setText to use String.valueOf., replace .setText(counter) with setText(String.valueOf(counter)), Use String.valueOf() instead of

concatenating an empty String with a number, Added some code for multiple timestamps, editing the remainder operation

would pose threats to validity), we use instead the comments
of edits as ground truth, and consider that when two comments
are similar, then the corresponding edits are also similar.

We applied the algorithm multiple times with different
number of clusters (min 50, max 3000, with a step of 10),
and each time computed the sum of squared errors (SSE) for
each cluster and averaged over all clusters. The computation
of SSE was made using the distances of the edit comments6.
Figure 2 depicts the computed SSE values versus the number
of clusters. Using the Kneedle algorithm [18], we determined
that the elbow of this curve is found for 390 clusters.
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Fig. 2. Sum of squared errors using the distances between comments for
different number of clusters (the dashed line depicts the elbow of the curve)

B. Identifying Edit Patterns
Our analysis produced 390 clusters, with roughly three

quarters of them suggesting interesting patterns (the others
were too generic/large clusters or too specific/small clusters)7.
To illustrate the effectiveness of the clustering, we provide
the 5 most representative comments of a sample subset of the
clusters in Table I. The most representative comments of each
cluster were defined as the ones that on average were closest
to all cluster comments (computed using the distance matrix).

6Given a cluster, the SSE can be computed by the sum of pairwise squared
distances of its points divided by the number of its points.

7All scripts and instructions required to reproduce our analysis are available
online at https://github.com/AuthEceSoftEng/MiningSOAnswerEdits

Several clusters are relevant to optimizations. For instance,
cluster 64 refers to using the abstract List class instead of
the implementation-specific ArrayList. Similarly, cluster 201
indicates the preference for for-each loops (over index loops),
while cluster 116 dictates that Scanner should be instantiated
outside the loop (and not every time an object is written). Other
edits are relevant to bug fixes. Cluster 94 comprises null/range
checks (also known as off-by-one bugs, occurring when a
loop is executed one more/less time than required), while
cluster 156 refers to replacing StringBuffer with StringBuilder
(an important detail as StringBuffer is synchronized, whereas
StringBuffer is not). Finally, there are also edits that add func-
tionality, such as the implementations of hashCode and equals
in cluster 107, which are necessary for the corresponding
objects to be used as keys in hash-based collections.

V. CONCLUSION

The evolution of Stack Overflow posts can provide insight
about the way community members collaborate to create
optimal answers to questions. In this work, we proposed a
similarity scheme for edits to answer posts, using their text
and code snippets, and applied clustering to extract useful
edit patterns. Important challenges left for future research in-
clude quantitatively evaluating our results as well as assessing
whether they can be useful in different scenarios. For example,
given a new answer, we could determine its closest cluster
(by matching on the text and code of answer posts) and thus
recommend the corresponding edit. By applying this process
repetitively, we could even suggest series of edits. In addition,
given that our clusters are highly cohesive (i.e. they exhibit low
SSE), they may also be used to revise the generic comments
(e.g. ‘improved code’) often produced by answer editors.

Further extending on our current research, we also plan to
build a code recommender (possibly as an IDE plugin) that
shall be given as input snippets and suggest edits. Other inter-
esting challenges involve studying the co-evolution between
questions and answers, or even identifying the edits to answer
posts that are triggered by Stack Overflow comments.

https://github.com/AuthEceSoftEng/MiningSOAnswerEdits
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