
Enhancing Requirements Reusability through Semantic
Modeling and Data Mining Techniques

Themistoklis Diamantopoulos and Andreas Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki,
Thessaloniki, Greece

ABSTRACT
Enhancing the requirements elicitation process has always been of added value to
software engineers, since it expedites the software lifecycle and reduces errors in the
conceptualization phase of software products. The challenge posed to the research
community is to construct formal models that are capable of storing requirements
from multimodal formats (text and UML diagrams) and promote easy requirements
reuse, while at the same time being traceable to allow full control of the system
design, as well as comprehensible to software engineers and end users. In this work,
we present an approach that enhances requirements reuse while capturing the static
(functional requirements, use case diagrams) and dynamic (activity diagrams) view
of software projects. Our ontology-based approach allows for reasoning over the
stored requirements, while the mining methodologies employed detect incomplete or
missing software requirements, this way reducing the effort required for requirements
elicitation at an early stage of the project lifecycle.

KEYWORDS
Multimodal Requirements Engineering; Web Ontology Language (OWL); Unified
Modeling Language (UML); Association Rule Mining; Requirements Reuse

1. Introduction

Contemporary trends in software engineering dictate agile approaches, which include
fast feature sprints and short time to market. In this context, requirements elicitation
has grown to be a sophisticated phase of software development. According to a recent
study (Montequin et al. 2014), inaccurate, incomplete or undefined requirements have
been found to be the most common reason of failure for software projects. Further-
more, the need for proper identification of software requirements at an early stage is
crucial, since continuous changes to initial requirements can lead to faults (Montequin
et al. 2014), while reengineering costs as a result of poorly specified requirements are
considerably high (Leffingwell 1997). These issues are quite noticeable in the indus-
try, where current trends involve using complex Enterprise Information Systems (EISs)
for integrating/mining business processes (Ingvaldsen and Gulla 2012), handling large
amounts of data, etc. (Olson and Kesharwani 2009), and thus the stakes of erroneous
requirements elicitation are high.

CONTACT Themistoklis Diamantopoulos. Email: thdiaman@issel.ee.auth.gr

ARTICLE HISTORY
Compiled November 2, 2017

Another important concept of contemporary software development is that of software
reuse. Given the introduction of the open-source software initiatives and the component-
based nature of software, developers nowadays rely more and more on reusing compo-
nents in a rapid prototyping context. The need for reusing existing components has
become more eminent than ever, since component reuse can reduce the time and effort
spent during all phases of the software development lifecycle, including requirements
elicitation, specification extraction and modeling, source code writing, and software
maintenance/testing. As a result, there are several approaches towards applying data
mining techniques to recommend software components that address the required func-
tionality and are of high quality. Most of these approaches, however, focus on the source
code of the components (Thummalapenta and Xie 2007; Sahavechaphan and Claypool
2006; Hummel, Janjic, and Atkinson 2008), on quality information/metrics (Diaman-
topoulos, Thomopoulos, and Symeonidis 2016), and on information from online repos-
itories (Papamichail, Diamantopoulos, and Symeonidis 2016; Dimaridou et al. 2017).
Requirements reuse cannot be easily addressed as requirements are usually expressed in
natural language text and UML models, which are often ambiguous or incomprehensible
to developers and stakeholders (Mich, Mariangela, and Pierluigi 2004).

The benefits from requirements reuse are evident regardless of the type of software
product built and the software development methodology adopted. Software is built
based on requirements identified, irrespective of whether they have been collected all
at once, iteratively and/or through throw-away prototypes. What is, thus, important is
to design a model capable of storing software requirements and develop a methodology
that will enable requirements reuse. This model has to allow for seamless instantiation
or even migration of existing requirements, and support reuse regardless of the software
engineering methodology applied.

The aforementioned challenges are applicable both to waterfall or iterative develop-
ment methodologies and to modern component-based or agile development practices.
Typical waterfall/iterative scenarios first require accurate and complete requirements
identification, and then proceed with specification extraction, software design, develop-
ment, and testing/quality assurance (Sommerville 2010). Hence, given a sufficient pool
of requirements/specifications (Li et al. 2014), mining techniques can be applied to fa-
cilitate the requirements elicitation phase of new products, and thus reduce the cost
and effort of requirements’ modifications at a later stage of the development process.
Requirements reuse can further prove advantageous in the context of component-based
or agile software development practices, which have lately become popular among dif-
ferent types of companies (Franck 2017). Although requirements in this case may be
modeled differently (e.g. as user stories) and may be continuously adapted as part of
the development process, having a sufficient pool from internal or even online sources
can again offer increased reuse potential. To maximize this potential, one would have
to develop a traceable and updatable scheme that shall support storing and indexing
requirements for similar projects. Given also current advances in automatically extract-
ing models from requirements and generating source code (Zolotas et al. 2016), reuse
may be enabled on different levels, e.g. projects with similar models could be assigned
interchangeable requirements.

In an attempt to confront these challenges, research efforts involve storing software
requirements in formal models (Kaindl et al. 2007; Smialek 2012; Wynne and Hellesoy
2012; Mylopoulos, Castro, and Kolp 2000), that allow requirements engineers to have
full control of the system design and detect errors at an early stage of the project
lifecycle, which is usually much more cost-effective than finding and fixing them at a
later stage (Boehm and Basili 2001). Furthermore, storing and/or indexing functional

2

requirements as formal representations allows for easy retrieval, either for immediate
reuse or for receiving useful recommendations for new (similar) projects. Research efforts
in this area are numerous, spanning from functional requirements and stakeholders
modeling to UML models mining for recommendations.

Concerning functional requirements elicitation, most approaches involve construct-
ing and instantiating models using domain-specific vocabularies. The models can be
subsequently used to perform validation (Kumar, Ajmeri, and Ghaisas 2010; Ghaisas
and Ajmeri 2013) or to recommend new requirements (Chen et al. 2005; Alves et al.
2008) by identifying missing entities and relations (Frakes, Prieto-Diaz, and Fox 1998).
Further lines of research include identifying dependencies among requirements and dis-
tributing them according to their relevance to stakeholders (Felfernig et al. 2010), as
well as recovering traceability links among requirements and software artefacts and uti-
lizing them to identify potentially changed requirements (Maalej and Thurimella 2009).
Though effective, most of these efforts are confined to specific domains, mainly due to
the lack of annotated requirements models for multiple domains.

UML model mining techniques suffer more or less from the same issues, as most
semantics-enabled methods (Gomes, Gandola, and Cordeiro 2007; Robles et al. 2012)
are based on the existence of domain-specific information. Finally, domain-agnostic
techniques (Alspaugh et al. 1999; Blok and Cybulski 1998; Kelter, Wehren, and Niere
2005) can be greatly facilitated by appropriate data handling of requirements models,
as their shortcomings usually lie on incorporating structure or flow information, e.g. for
use case or activity diagrams.

In this work, we design a model capable of enhancing requirements reuse. Specifically,
we facilitate storing requirements from multimodal formats, including semi-structured
text and UML use case and activity diagrams. Our methodology effectively models the
static and dynamic views of software projects and employs heuristics and NLP tech-
niques to instantiate software ontologies, that can be subsequently employed for reason-
ing over the models, for mining specifications to provide useful recommendations, and
for maintaining and updating the original software requirements (as our methodology
is fully traceable). Having successfully annotated requirements, we then employ data
mining techniques to extract useful associations. In specific, association rule mining
techniques and heuristics are used to determine whether the requirements of a software
project are complete and recommend new requirements, while matching techniques are
used on UML models in order to find similar diagrams and thus allow the requirements
engineer to improve the existing functionality and the data flow/business flow of his/her
project.

2. Related Work

2.1. Modeling and Mining Functional Requirements

Early research efforts in recommendation systems for requirements elicitation were fo-
cused on domain analysis, and thus used linguistics (vocabularies, lexicons) to determine
project domains and identify missing entities and relations at requirements’ level. An
example of such a tool is DARE (Frakes, Prieto-Diaz, and Fox 1998), which utilizes mul-
tiple sources of information, including the requirements, the architecture and the source
code of a project. The tool extracts entities and relations from several projects and then
uses clustering to identify common entities and thus recommend similar artefacts and
architectural schemata for each project. Kumar, Ajmeri, and Ghaisas (2010) make use

3

of ontologies in order to store requirements and project domains and extract of soft-
ware specifications. Ghaisas and Ajmeri (2013) further develop a Knowledge-Assisted
Ontology-Based Requirements Evolution (K-RE) repository in order to facilitate soft-
ware requirements elicitation and resolve any conflicts between change requests.

There are also several approaches that aspires to identify the features of a system
using its requirements, and recommend new ones. Chen et al. (2005) used requirements
from several projects and constructed relationship graphs among requirements. The au-
thors then employed clustering techniques to extract domain information. Their system
can identify features, such as e.g. writing to a file, that can be used to create a fea-
ture model of projects that belong to the same domain. Similar work was performed
by Alves et al. (2008), who employed the vector space model to construct a domain fea-
ture model, and used latent semantic analysis to find similar requirements by clustering
them into domains. Dumitru et al. (2011) employed association rule mining to analyze
requirements and subsequently cluster them into feature groups. These groups can be
used to find projects that are similar or to recommend a new feature for a project.

Finally, there are also approaches that explore the relation between requirements
and stakeholders (Lim and Finkelstein 2012; Castro-Herrera et al. 2008; Mobasher and
Cleland-Huang 2011); the related systems are given as input ratings for the require-
ments of individual stakeholders, and use collaborative filtering (Konstan et al. 1997)
to provide recommendations and prioritize requirements according to stakeholder pref-
erences. However, these approaches, and any approaches focusing on non-functional
requirements (Romero-Mariona, Ziv, and Richardson 2008), deviate from the scope of
this work.

Based on the above discussion, one easily notices that most approaches are domain-
centered (Frakes, Prieto-Diaz, and Fox 1998; Kumar, Ajmeri, and Ghaisas 2010; Ghaisas
and Ajmeri 2013; Chen et al. 2005; Alves et al. 2008), which is actually expected as
domain-specific information can improve the understanding of the software project un-
der analysis. On the other hand, as noted by Dumitru et al. (2011), these domain
analysis techniques are often not applicable due to the lack of annotated requirements
for a specific domain. Although feature-based techniques (Dumitru et al. 2011; Romero-
Mariona, Ziv, and Richardson 2008) do not face the same issues, their scope is high-level
as they are not applied on fine-grained requirements.

In this work, we construct a system that focuses on functional requirements and pro-
vides low-level recommendations, maintaining a semantic domain-agnostic outlook. To
do so, we use a state-of-the-art semantic role labeler (Roth et al. 2014; Diamantopoulos
et al. 2017) to extract actors, actions, objects, and properties from functional require-
ments, and design a set of ontologies to effectively index them. The use of ontologies for
storing and validating requirements is common (Castañeda et al. 2010; Siegemund et al.
2011; Happel and Seedorf 2006; Dermeval et al. 2015), however we chose to design a
new schema that is flexible and supports indexing both the static and the dynamic view
of software projects, allows reasoning over the data for validation, as well as mining for
recommendation purposes.

2.2. Modeling and Mining UML models

Early efforts for UML model mining employed Information Retrieval techniques and
were directed towards use case scenarios (Blok and Cybulski 1998; Alspaugh et al.
1999). Typically, such scenarios can be defined as sets of events triggered by actions
of actors, and they also include authors and goals. Thus, research on scenario reuse is

4

mainly directed towards representing event flows and comparing them to find similar use
cases (Blok and Cybulski 1998). Other approaches involve representing UML diagrams
to graphs and detecting similar graphs (diagrams) using graph matching. In such graph
representations, the vertices comprise the object elements of UML use case, class, and
sequence diagrams, while the edges denote the associations among these elements. The
employed graph matching techniques can either be exact (Woo and Robinson 2002;
Robinson and Woo 2004; Bildhauer, Horn, and Ebert 2009) or inexact (Salami and
Ahmed 2013). Similar work by Park and Bae (2011) involves using Message Object
Order Graphs (MOOGs) to store sequence diagrams, where the nodes and the edges
represent the messages and the flow among them.

Despite the effectiveness of graph based methods under certain scenarios (e.g. struc-
tured models), applying them to UML diagrams lacks semantics. As noted by Kelter,
Wehren, and Niere (2005), UML model mining approaches should focus on creating a
semantic model, rather than arbitrarily applying similarity metrics. Thus, UML dia-
grams (and XML structures) are also commonly represented as ordered trees (Kelter,
Wehren, and Niere 2005; Chawathe et al. 1996; Wang, DeWitt, and Cai 2003). The main
purpose of these efforts is to first design a data model that captures the structure of
UML diagrams, and then apply of ordered tree similarity metrics. These approaches are
effective for static diagram types (use case, class), however they cannot efficiently rep-
resent data flows or action flows, thus they do not adhere to dynamic models (activity,
sequence). Furthermore, they usually employ string difference techniques, thus they are
not applicable to scenarios with multiple sources of diagrams. To confront this challenge,
researchers have attempted to incorporate semantics through the use of domain-specific
ontologies (Gomes, Gandola, and Cordeiro 2007; Robles et al. 2012; Bonilla-Morales,
Crespo, and Clunie 2012). Matching diagram elements (actors, use cases, etc.) according
to their semantic distance has indeed proven effective as long as domain knowledge is
available; most of the time, however, domain specific information is limited.

In this work, we focus on the requirements elicitation phase and propose two mining
methodologies, one for use case diagrams and one for activity diagrams. For use case
diagram matching, we handle use cases as discrete nodes and employ semantic similar-
ity metrics, thus combining the advantages of graph based and Information Retrieval
techniques and avoiding their potential limitations. For activity diagram matching, we
construct a model that represents activity diagrams as sequences of action flows. This
way, the dynamic nature of the diagrams is modeled effectively, without using graph
based methods that could result to over-engineering. Our algorithm is similar to ordered
tree methods (Kelter, Wehren, and Niere 2005; Chawathe et al. 1996; Wang, DeWitt,
and Cai 2003), which are actually a golden mean unstructured (e.g. Information Re-
trieval) and heavily structured (e.g. graph based) methods. Our matching methodologies
further use a semantic scheme for comparing strings, which is however domain-agnostic
and thus can be used in scenarios with diagrams originating from various projects.

3. Modeling and Mining Software Requirements

3.1. System Overview

Our approach comprises two parts: the Reqs2Specs module and the requirements mining
methodology built within the context of the EU-funded project S-CASE (Scaffolding
Scalable Software Services)1. S-CASE facilitates rapid application prototyping based on

1http://s-case.github.io/

5

http://s-case.github.io/

software requirements and system models provided in multimodal formats. The concep-
tual architecture of our requirements elicitation approach with respect to the project is
shown in Figure 1.

Customers

Developer

Functional

Requirements
UML Diagrams

Static Ontology Dynamic Ontology

Requirements

Mining

System

Specifications

Reqs2Specs

Figure 1. Overview of the Conceptual Architecture of our System.

In a typical scenario, the developer communicates with the customers in order to
capture user requirements, document them into functional requirements and draw UML
diagrams that describe the envisioned system. Using our approach, these artefacts are
syntactically and semantically annotated and stored in two ontologies, the static on-
tology and the dynamic ontology, which practically store the static elements and the
dynamic elements of the system. Any mining methodologies are performed at this
stage using the requirements mining module, while any changes to these representa-
tions are propagated back to the functional requirements and the UML diagrams, since
our methodology is fully traceable. As a result, the stakeholders are always provided
with a clear requirements view of the system, including natural language text as well
as standardized (UML-compliant) models.

Having finalized the requirements elicitation process, the Reqs2Specs module parses
the ontologies and extracts detailed system specifications, which are suitable for use
either directly by developers, or even as input in an automated source code generation
engine (as performed in S-CASE (Zolotas et al. 2016)). The following subsections outline
the proposed ontologies and the mining process for functional requirements and UML
diagrams. The full specification of the ontologies can be found at http://s-case.
github.io/publications/eis2017/.

3.2. Functional Requirements Modeling and Mining

3.2.1. Static Ontology
The static ontology models functional requirements and use case diagrams, and thus
revolves around the concept of an acting unit (e.g. user or admin) performing some
action(s) on some object(s) (Roth et al. 2014). The ontology class hierarchy is shown in
Figure 2.

Any Concept of the ontology is further classified into Project, Requirement,
ThingType, and OperationType. Instances of ThingType are acting units (Actor) and
units acted upon (Object and Property), while instances of OperationType refer to all
types of actions, including possession (Ownership), passive transformation (Emergence),
actor status (State), and transitive actions that are applied on an object (Action). The
aforementioned ontology (sub)classes are related using the properties that are shown in
Figure 3.

6

http://s-case.github.io/publications/eis2017/
http://s-case.github.io/publications/eis2017/

Project

Requirement

Concept

ThingType

Property

Object

Actor

OperationType

Ownership

Emergence

Action

State

Figure 2. Static Ontology of Software Projects.

ThingType

acts_on

has_actor owns
occurs

OperationType

OwnershipEmergenceActionState

Property ObjectActor

acts_on

Figure 3. Properties of the Static Ontology.

A Project can have many instances of Requirement and each Requirement has
ThingType and OperationType instances, enabling the tracing and the reengineering
of the original requirements. Additionally, OperationType connects to Actor via the
has actor property (and the inverse is actor of property), and connects to Object or
Property via acts on (for Action), occurs (for Emergence), and owns (for Ownership).
Non-transitive State operations do not connect to any Object or Property.

Populating the ontology requires annotating the concepts of functional requirements
(and use case models) that usually follow the Subject-Verb-Object motif. To do so, we
employ an NLP parser (thoroughly described in (Diamantopoulos et al. 2017)), which
operates in two stages: first it performs syntactic analysis to identify the grammatical
category of each word and the grammatical relations between them, and then it performs
semantic analysis to extract semantic features for the terms (e.g. part-of-speech, relation
to parent lemma, etc.) and further classify the terms to the relevant ontology concepts.

3.2.2. Functional Requirements Mining
To design and evaluate our requirements mining model, we use a diverse dataset of
30 projects, which includes student projects, industrial prototypes, as well as RESTful

7

prototype applications from S-CASE. Our dataset can be found at http://s-case.
github.io/publications/eis2017/. In total, these projects have 514 functional re-
quirements, and amount to 7234 entities and 6626 relations among them. An example
annotated requirement is shown in Figure 4.

A user must be able to create an account with a username and a password.

Actor Action

IsActorOf ActsOn HasProperty HasProperty

Object Property Property

Figure 4. Example annotated requirement.

Our system can relate domain-agnostic terms between different projects. At first, the
entities and relations for each requirement (and thus for each project) are extracted.
For instance, for the requirement of Figure 4, we may extract the terms user, create,
account, username and password, as well as the corresponding relations among them:
user IsActorOf create, create ActsOn account, account HasProperty username,
and account HasProperty password. Relating two requirements (or two projects in
general) requires semantically relating their terms. For instance, if we have another
project where each user also has an account, yet the chosen term is profile, then these
two terms have to be marked as semantically similar.

In order to mark semantically similar terms, we require an index of words and a
similarity measure. We use WordNet (Miller 1995) as our index, and employ the MIT
Java Wordnet Interface (Finlayson 2014) and the Java Wordnet::Similarity library2 to
interface with it. There are several methods for computing the similarity between two
terms (Pedersen, Patwardhan, and Michelizzi 2004). However, most of them either do
not employ semantics or they are not correlated to human judgment. As a result, we use
the information-content measure introduced by Lin (1998), which and conforms with
human judgment more often than other metrics. Thus we define the similarity between
two terms (i.e. WordNet classes) C1 and C2 as follows:

sim(C1, C2) = 2 · logP (C0)
logP (C1) + logP (C2) (1)

where C0 is the most specific class that contains both C1 and C2. E.g. the most specific
class that describes terms For account and profile is the class record, as shown also
in the relevant WordNet fragment of Figure 5.

Upon having found C0, we compute the similarity between the two terms using equa-
tion (1), which requires the information content for each of the three WordNet classes.
The information content of a WorNet class is defined as the log probability that a cor-
pus term belongs in that class3. Thus, for instance, record, account, and profile have
information content values equal 7.874, 7.874, and 11.766 respectively, and the similar-
ity between account and profile is 2 · 7.874/(7.874 + 11.766) = 0.802. Finally, two
terms are assumed to be semantically similar if their similarity value (as determined by
equation (1)) is higher than a threshold t. We set this threshold to 0.5, and thus we
now have 1512 terms for the 30 projects, out of which 1162 are are distinct.

Hence, given a dataset with one set of items per software project, we can extract

2http://users.sussex.ac.uk/˜drh21/
3We used the precomputed information content data of the Perl WordNet similarity library (Pedersen, Pat-

wardhan, and Michelizzi 2004), available at http://www.d.umn.edu/˜tpederse/.

8

http://s-case.github.io/publications/eis2017/
http://s-case.github.io/publications/eis2017/
http://users.sussex.ac.uk/~drh21/
http://www.d.umn.edu/~tpederse/

entity

abstraction

communication

indication

evidence

record

account history

biography

profile

Figure 5. Example WordNet fragment where record is the most specific class of account and profile.

useful association rules using association rule mining (Agrawal, Imieliński, and Swami
1993). Let P = {p1, p2, . . . , pm} be the set of m software projects and I = {i1, i2, . . . , in}
be the set of all n items. Itemsets are defined as subsets of I. Given an itemset X, its
support is defined as the number of projects in which all of its items appear in:

σ(X) = |{pi|X ⊂ pi, pi ∈ P}| (2)

Association rules are expressed in the formX → Y , whereX and Y are disjoint itemsets.
An example rule that can be extracted from the items of the requirement shown in
Figure 4 is {account HasProperty username} → {account HasProperty password}.

The two metrics used to determine the strength of a rule are its support and its
confidence. Given an association rule X → Y , its support is the number of projects for
which the rule is applicable, and it is given as:

σ(X → Y) = σ(X ∪ Y)
|P |

(3)

The confidence of the rule indicates how frequently items in Y appear in X, and it is
given as:

c(X → Y) = σ(X ∪ Y)
σ(X) (4)

We use the Apriori association rule mining algorithm (Agrawal and Srikant 1994) in
order to extract association rules with support and confidence above certain thresholds.
For our dataset, we set the minimum support to 0.1, so that any rule has to be contained
in at least 10% of the projects. We also set the minimum confidence to 0.5, so that the
extracted rules are confirmed at least half of the time that their antecedents are found.
The execution of Apriori resulted in 1372 association rules, a fragment of which is shown
in Table 1. Several of these rules are expected. For example, rule 2 indicates that in
order for a user to login, the system must first validate the account. Also, rule 5 implies
that logout functionality should co-occur in a system with login functionality.

Upon having extracted the rules, we use them to recommend new requirements for
software projects. At first, we define a new set of items p for the newly added software

9

Table 1. Sample Association Rules Extracted by the Dataset.

No Association Rule σ c

1 provide ActsOn product→ system IsActorOf provide 0.167 1.0
2 system IsActorOf validate→ user IsActorOf login 0.1 1.0
3 user IsActorOf buy → system IsActorOf provide 0.1 1.0
4 administrator IsActorOf add→ administrator IsActorOf delete 0.167 0.833
5 user IsActorOf logout→ user IsActorOf login 0.167 0.833
6 user IsActorOf add→ user IsActorOf delete 0.133 0.8
7 user IsActorOf access→ user IsActorOf view 0.1 0.75
8 edit ActsOn product→ add ActsOn product 0.1 0.75
9 administrator IsActorOf delete→ administrator IsActorOf add 0.167 0.714

10 user HasProperty contact→ user IsActorOf search 0.133 0.5
σ: Support, c: Confidence

project. Given this set of items and the rules, we extract the activated rules R. A rule
X → Y is activated for the project with set of items p if all items present in X are also
contained in p (i.e. X ⊂ p). The set of activated rules R is then flattened by creating
a new rule for each combination of antecedents and consequents of the original rule,
so that the new rules contain single items as antecedents and consequents. Given, e.g.,
the rule X → Y where the itemsets X and Y contain the items {i1, i2, i3} and {i4, i5}
respectively, the new flattened rules are i1 → i4, i1 → i5, i2 → i4, i2 → i5, i3 → i4, and
i3 → i5. We also propagate the support and the confidence of the original rules to these
new flattened rules, so that they are used as importance criteria. Finally, given the set
of items of a project p and the flattened activated rules for this project, our system
provides recommendations of new requirements using the heuristics of Table 2.
Table 2. Activated rule heuristics for a software project.

Antecedent Consequent Conditions Result

[Actor1, Action1] [Actor2, Action2] Actor2 ∈ p [Actor2, Action2, Object],
∀Object ∈ p :

[Actor1, Action1, Object]

[Action1, Object1] [Actor2, Action2] Actor2 ∈ p [Actor2, Action2, Object1]

[Actor1, Action1] [Action2, Object2] Object2 ∈ p [Actor1, Action2, Object2]

[Action1, Object1] [Action2, Object2] Object2 ∈ p [Actor,Action2, Object2],
∀Actor ∈ p :

[Actor,Action1, Object1]

* (except for the [Action2, Object2] Object2 ∈ p [Actor,Action2, Object2],
above) ∀Actor,Action ∈ p :

[Actor,Action,Object2]

* [Any2, P roperty2] Any2 ∈ p [Any2, P roperty2]

Concerning the heuristics for consequent [Actor2, Action2], which corresponds to an
Actor2 IsActorOf Action2 item, the recommended requirement includes the actor and
the action of the consequent as well as an Object that is determined by the antecedent.
Given, e.g., an antecedent [create, bookmark] and a consequent [user, edit], the new
recommended requirement will be [user, edit, bookmark]. Concerning the heuristics for

10

consequent [Action2, Object2], which corresponds to an Action2 ActsOn Object2 item,
the recommended requirement includes the action and the object of the consequent
as well as the actor that is determined by the antecedent. Given, e.g., an antecedent
[user, profile] and a consequent [create, profile], the new recommended requirement
will be [user, create, profile]. Finally, any rule with a HasProperty consequent (and
any antecedent) leads to new recommended requirements of the form [Any, Property].
An example requirement would be [user, profile]. Using the static ontology, we are also
able to reconstruct requirements, in the formats ‘The Actor must be able to Action
Object.’ and ‘The Any must have Property.’.

3.3. UML Diagrams Modeling and Mining

3.3.1. Dynamic Ontology
The dynamic ontology models dynamic representations found in activity diagrams,
and thus represents actions as ontology concepts and flows between them using on-
tology properties. The class hierarchy of the ontology is shown in Figure 6. Apart from
the Project and ActivityDiagram classes, any Concept instances of the ontology in-
clude activities (AnyActivity), conditions (Condition), and transitions (Transition),
i.e. typically most elements that are present in activity diagrams. Activities are fur-
ther distinguished into initial diagram states (InitialActivity), final diagram states
(FinalActivity), and all other activities of the model ((Activity)), while classes
Actor, Action, and Object are used to store the main elements of an activity (e.g. an
activity ‘create username’ would split into action ‘create’ and object ‘username’).

Action

Concept

AnyActivity

Activity

InitialActivity

FinalActivity

Condition

PreCondition

PostCondition

GuardCondition

Project

ActivityDiagram

Object

Actor

Transition

Figure 6. Dynamic Ontology of Software Projects.

Transition describes the flow from one instance of AnyActivity to the next instance

11

of AnyActivity, and thus connects to these instances via the properties has source
and has target respectively, as shown in Figure 7. Additionally, each Transition
may or may not have a GuardCondition allowing the execution of the target activ-
ity given with the corresponding answer (e.g. ‘Is the username unique? Yes’). Instances
of GuardCondition also have their opposites (e.g. ‘Is the username unique? No’), con-
nected via bidirectional property is opposite of. Finally, diagrams can also have con-
ditions that have to be met before (PreCondition) or after (PostCondition) the ex-
ecution of their activity flow. As in the static ontology, all properties also have their
corresponding inverse properties (e.g. the inverse of has source is is source of).

Condition

has_actor

AnyActivity

FinalActivityActivityInitialActivity

TransitionPostCondition GuardConditionPreCondition

ActionActor Object Property

has_condition

has_source has_target

has_targethas_source

has_action
has_object

has_property

Figure 7. Properties of the Dynamic Ontology.

3.3.2. UML Models Mining
To design our UML diagrams mining model, we use a dataset of use case and activity
diagrams, which is available at http://s-case.github.io/publications/eis2017/
(more on the dataset in subsection 4.2) and includes the diagrams of project Restmarks,
a demo social service that allows storing bookmarks online, adding tags and sharing
them with other users (more on Restmarks in subsection 4.1). An example use case
diagram from Restmarks that contains 10 use cases and 3 actors is shown in Figure 8.

As use cases refer to static information, they are stored in the static ontology with
a model that is mostly flat. Specifically, the model comprises the actors and the use
cases of the diagram. For example, the diagram of Figure 8 has a model that con-
sists of two sets: the set of actors {User, Registered User, Guest User} and the set
of use cases {Add Bookmark, Update Bookmark, Update Account, Show Bookmark,
Search by Tag, Add Tag, Login to Account, Delete Bookmark}. Given two diagrams
D1 and D2, our matching scheme involves two sets for each diagram: one set for the
actors A1 and A2 respectively, and one set for the use cases UC1 and UC2 respectively.
The similarity between the diagrams is computed by the following equation:

s(D1, D2) = α · s(A1, A2) + (1− α) · s(UC1, UC2) (5)

where s denotes the similarity between two sets (either of actors or of use cases) and
α denotes the importance of the similarity of actors for the diagrams. α was set to the

12

http://s-case.github.io/publications/eis2017/

Create Account

Show Bookmark

<include>

List Bookmarks

Search by Tag

Update Bookmark

Login to Account

Update Account

Delete Bookmark

Add Bookmark
Add Tag

<include>

<include>

<include>

<extend>

Guest User

User

Registered User

Figure 8. Example use case diagram for project Restmarks.

proportion of the number of actors divided by the number of use cases of the queried
diagram. Given, e.g., a diagram with 3 actors and 10 use cases, α is set to 0.3.

The similarity between two sets, either actors or use cases, is given by the combination
between all the matched elements with the highest score. Given, e.g., two sets {user,
administrator, guest} and {administrator, user}, the best possible combination is
{(user, user), (administrator, administrator), (guest, null)}, and the matching would
return a score of 2/3 = 0.66. We employ the semantic measure of the previous subsection
to provide a similarity score between strings. Given two strings S1 and S2, we first split
them into tokens, i.e. tokens(S1) = {t1, t2}, tokens(S2) = {t3, t4}, and then determine
the combination of tokens with the maximum token similarity scores. The final similarity
score between the strings is determined by averaging over all tokens. For example, given
the strings ‘Get bookmark’ and ‘Retrieve bookmarks’, the best combination is (‘get’,
‘retrieve’) and (‘bookmark’, ‘bookmarks’). Since the semantic similarity between ‘get’
and ‘retrieve’ is 0.677, and the similarity of ‘bookmark’ with ‘bookmarks’ is 1.0, the
similarity between the strings is (0.677 + 1)/2 = 0.8385.

Given, for example, the diagram of Figure 8 and the diagram of Figure 9, the match-
ing between the diagram elements is shown in Table 3, while the final score (using
equation (5)) is 0.457.

Concerning recommendations, the engineer of the second diagram could consider
adding a guest user. Furthermore, he/she could consider adding use cases for listing or
updating bookmarks, adding tags to bookmarks, or updating account data.

13

Create new account

Retrieve Bookmark

Search

Login

Remove Bookmark

Add Bookmark

<include>

<include>

User

Registered User

Figure 9. Example use case diagram for matching with the one of Figure 8.

Table 3. Matching between the diagrams of Figures 8 and 9.

Diagram 1 Diagram 2 Score

User User 1.00
Registered User Registered User 1.00
Guest User null 0.00
Delete Bookmark Remove Bookmark 0.86
Show Bookmark Retrieve Bookmark 0.50
Add Bookmark Add Bookmark 1.00
Create Account Create new account 0.66
Search by Tag Search 0.33
Login to Account Login 0.33
List Bookmarks null 0.00
Update Bookmark null 0.00
Update Account null 0.00
Add Tag null 0.00

Concerning activity diagrams, we require a representation that would view the dia-
gram as a flow model. An example diagram of Restmarks is shown in Figure 10.

Activity diagrams consist mostly of sequences of activities and possible conditions.
Concerning conditions (and forks/joins), we split the flow of the diagram. Hence an
activity diagram is actually treated as a set of sequences, each of which involves the
activities required to traverse the diagram from its start node to its end node. For
instance, the diagram of Figure 10 spawns a sequence StartNode > Logged In? >
Login to account > Provide bookmark URL > Create Bookmark > Add tag >
User wants to add tag? > EndNode. Upon having parsed two diagrams and having
extracted one set of sequences per diagram, we compare the two sets. In this case and
in contrast with use case diagram matching, we set a threshold tACT for the semantic

14

Create BookmarkAdd tag

Login to account

Provide tag text

Add tag to bookmark

Provide bookmark URL

Logged In?

No

Yes

User wants to add tag?

YesNo

Figure 10. Example activity diagram for project Restmarks.

string similarity metric. Thus, two strings are considered similar if their similarity score
is larger than this threshold. We set tACT to 0.5.

We use the Longest Common Subsequence (LCS) (Cormen et al. 2009) in order to
determine the similarity score between two sequences. The LCS of two sequences X
and Y is defined as the longest subsequence of common (yet not consecutive) elements
between them. Given, e.g., the sequences [a, b, d, e, g] and [a, b, e, h], their LCS is [a, b, e].
Finally, the similarity score between the sequences is defined as:

sim(X, Y) = 2 · |LCS(X, Y)|
|X|+ |Y | (6)

The similarity score is normalized in [0, 1]. Given that we have two sets of sequences (one
for each of the two diagrams), their similarity is given by the best possible combination
between the sequences, i.e. the combination that results in the highest score. Given,
e.g., two sets {[a, b, e], [a, b, d, e], [a, b, c, e]} and {[a, b, e], [a, c, e]}, the combination with
the highest score is {([a, b, e], [a, b, e]), ([a, b, c, e], [a, c, e]), ([a, b, d, e], null)}. Finally, the
similarity score between the diagrams is the average of their LCS scores.

For example, let us consider matching the diagrams of Figure 10 and Figure 11. Our
system returns the matching between the sequences of the diagrams, shown in Table 4,
while the total score, which is computed as the mean of these scores, is (0.833 + 0.714 +
0 + 0)/4 = 0.387.

The matching process between the sequences indicates that the engineer of the second
diagram could add a new flow that would include the option to add a tag to the newly
created bookmark.

15

Create Bookmark

Login

Provide URL

Logged In?

No

Yes

Figure 11. Example activity diagram for matching with the one of Figure 10.

Table 4. Matching between the diagrams of Figures 8 and 9.

Diagram 1 Diagram 2 Score

StartNode > Logged In? > Provide bookmark
URL > Create Bookmark > Add tag > User wants
to add tag? > EndNode

StartNode > Logged In? >
Provide URL > Create Book-
mark > EndNode

0.833

StartNode > Logged In? > Login to account >
Provide bookmark URL > Create Bookmark >
Add tag > User wants to add tag? > EndNode

StartNode > Logged In? >
Login > Provide URL > Cre-
ate Bookmark > EndNode

0.714

StartNode > Logged In? > Provide bookmark
URL > Create Bookmark > Add tag > User wants
to add tag? > Provide tag text > Add tag to book-
mark > EndNode

null 0.000

StartNode > Logged In? > Login to account >
Provide bookmark URL > Create Bookmark >
Add tag > User wants to add tag? > Provide tag
text > Add tag to bookmark > EndNode

null 0.000

4. Evaluation

4.1. Functional Requirements Mining

In order to demonstrate the validity of our approach we have performed requirements
mining and provide recommendations for a small-scale software project. Project Rest-
marks is a demo social service for bookmarks created in the context of S-CASE to serve
as a scenario for the S-CASE workflow. The users of Restmarks can store online their
bookmarks, share them with the Restmarks community and search for bookmarks using
tags. The requirements of the service are shown in Figure 12. To apply our methodol-
ogy, we created the association rules using the remaining 29 projects, and isolated the
rules that are activated by the annotated requirements of Restmarks, including their

16

corresponding support and confidence values.

(a) Functional requirements of Restmarks.

(b) Recommended requirements for Restmarks.

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Support

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
fi
d
e
n
ce

100.0%
100.0%

50.0%

0.0%

All
Recommended
Requirements

Correctly
Recommended
Requirements

(c) Visualized requirements for Restmarks.

Figure 12. Example depicting the recommendation of functional requirements for project Restmarks.

The recommended requirements are quite rational. For example, the option to edit
one’s tags (e.g. for renaming) or to log out of one’s account probably has been omitted
by the engineers/stakeholders that originally compiled the requirements of Restmarks.
Interestingly, the quality of each recommendation seems to be correlated with the cor-
responding support and confidence values. By visualizing the number of recommended
requirements for each different combination of support and confidence values (in red
color), including the percentage of correctly recommended requirements for these com-
binations (in blue color), we conclude that most recommendations exhibit high confi-
dence.

Finally, we used a cross-validation scheme to further evaluate our approach and ex-
plore the influence of the support and confidence metrics on the quality of the rec-
ommendations. We split the dataset into 6 equal bins of 5 projects. For each bin, we
removed the 5 projects of the bin from the dataset, we extracted the association rules
from the remaining 25 projects, and recommended new requirements for the 5 removed
projects. After this procedure, we examined the recommended requirements for each
project and determined whether each of them could be valid. The accumulated results
of our evaluation for all projects are shown in Table 5 and visualized in Figure 13.

In total, our system recommended 297 requirements, out of which 177 were correct
recommendations. Given that almost 60% of the recommendations can lead to useful
requirements, we deem the results as satisfactory. Given a project, the requirements
engineer would have been presented with a set of 10 requirements, out of which he/she
would have selected 6 to add to the project. Most recommended requirements are ex-
tracted from rules with low support, which is actually expected since our dataset is

17

Table 5. Evaluation Results for the Recommended Requirements.

Correctly Rec. Recommended % Correctly Rec.
Support (σ) Confidence (c) Requirements Requirements Requirements

0.2 1.0 1 2 50.0%
0.133 1.0 23 37 62.16%

0.1 1.0 43 76 56.58%
0.133 0.8 2 4 50.0%

0.2 0.75 0 1 0.0%
0.1 0.75 64 92 69.57%

0.167 0.71 0 1 0.0%
0.133 0.67 13 14 92.86%
0.167 0.62 1 1 100.0%

0.1 0.6 9 17 52.94%
0.133 0.57 4 7 57.14%
0.167 0.56 4 5 80.0%

0.1 0.5 13 40 32.5%

Total 177 297 59.6%

0.08 0.10 0.12 0.14 0.16 0.18
Support

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
fi
d
e
n
ce

0.0%
92.86%

80.0%

50.0%

56.58%

69.57%

32.5%

57.14%
52.94%

62.16%

100.0%

All
Recommended
Requirements

Correctly
Recommended
Requirements

Figure 13. Visualization of recommended requirements including the percentage of the correctly recom-
mended requirements given support and confidence.

largely domain-agnostic. However, low support rules do not necessarily result in low
quality recommendations, as long as their confidence is large enough. Indicatively, 2 out
of 3 recommendations extracted from rules with confidence values equal to 0.5 may not
be useful. However, setting the confidence value to 0.75 ensures that more than 2 out
of 3 recommended requirements will be added to the project.

4.2. UML Models Mining

To evaluate our UML mining model, we use a dataset of 65 use case diagrams and
72 activity diagrams, originating from software projects with different semantics. Our
methodology involves finding similar diagrams and subsequently providing recommen-
dations, thus we initially split diagrams into 6 categories, including health/mobility,

18

traffic/transportation, social/p2p networks, account/product services, business process,
and generic diagrams. We construct all possible pairs of use case and activity dia-
grams, which are 2080 and 2556 pairs respectively, and mark each pair as relevant or
non-relevant according to their categories. The dataset of the XMIs and their defined
categories can be found at http://s-case.github.io/publications/eis2017/.

We compare our approach to that of Kelter, Wehren, and Niere (2005)4. Given that
the two approaches are structurally similar, their execution on use case diagrams pro-
vides an assessment of the semantic methodology. Concerning activity diagrams, the
approach of Kelter et al. uses a static data model, thus our evaluation should reveal
how using a dynamic flow model can be more effective. Upon executing the approaches
on the sets of use case and activity diagrams, we normalized the matching scores ac-
cording to their average (so that pairs are defined when their score is higher than 0.5),
and computed the precision, the recall, and the F-measure for each approach and for
each diagram type. The results are shown in Figure 14.

Precision Recall F-Measure
0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr
ic
s

Our approach
Kelter et al.

(a) Evaluation of Use Case diagrams.

Precision Recall F-Measure
0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr
ic
s

Our approach
Kelter et al.

(b) Evaluation of Activity diagrams.

Figure 14. Classification results of our approach and the approach of Kelter et al. for the dataset diagrams.

It is clear that our approach outperforms that of Kelter et al. when it comes down
to finding relevant diagram pairs both for use case and for activity diagrams. The
higher recall values indicate that our methodology can effectively retrieve more relevant
diagram pairs, while high precision values indicate that the retrieved pairs are indeed
relevant and false positives (non-relevant pairs that are considered relevant) are fewer.
The combined F-measure also indicates that our approach is more effective for extracting
semantically similar diagram pairs.

5. Threats to Validity and Limitations

The limitations and threats to the validity of our approach span along the following
four axes: (a) its applicability to component-based and agile development practices, (b)
its effectiveness in cases of randomly structured or unstructured data, (c) the potential
of its semantics to extract new information from the models through inference, and (d)
the assessment of its usefulness in actual scenarios.

Requirements in agile approaches are usually characterized by user stories, while
semi-structured text and/or UML diagrams are not typically used (except when it is

4An extensive comparison between the two approaches has been made as part of deliverable D2.4 of S-CASE,
available at http://s-case.github.io/publications/eis2017/S-CASE_D2.4.pdf

19

http://s-case.github.io/publications/eis2017/
http://s-case.github.io/publications/eis2017/S-CASE_D2.4.pdf

considered necessary). As a result, our NLP parsing and UML modules cannot be used
directly. However, the underlying modeling of requirements is capable of supporting the
elements present in different formats, such as user stories; our ontologies sufficiently
capture the static and dynamic view of software projects regardless of the require-
ments’ representations. In relevant work (Zolotas et al. 2016), the dynamic ontology
is instantiated using storyboards, which are graphical representations of program flow.
Furthermore, as a future extension, the NLP module could be updated to support semi-
structured formats that are similar to user stories, such as the Cucumber format (Wynne
and Hellesoy 2012). Finally, the traceability of our methodology can prove useful in an
agile context, where it is common for requirements to change and system features to
be updated. This is particularly useful in cases of automated model (and subsequently
code) generation, e.g. as in (Zolotas et al. 2016), since it allows modifying the require-
ments and maintaining a clear link between them and the produced features.

A relevant threat to validity involves the nature and quality of the data that are
entered into the system. That is, although our approach can effectively handle well-
defined requirements and standardized UML diagrams, its performance when given
as input randomly structured or even unstructured data is not directly assessed by
our datasets and evaluation. To address this threat, we have selected a set of projects
that come from different sources, different software engineering teams and different
domains. As already noted, our dataset contains student projects, industrial prototypes,
and RESTful prototype applications from the EU-funded project S-CASE. Most of
these projects were developed by third-party people or organizations, while the RESTful
prototype applications were developed in the context of S-CASE, yet by the pilot cases
and not the authors of this work. This led to testing with different types of requirements
(e.g. the average number of tokens for the textual requirements of industrial prototypes
was 16.6 as opposed to 11.6 for student projects), all however effectively parsed in our
models (see (Diamantopoulos et al. 2017) for more information about the effectiveness
of the NLP parser for model instantiation using diverse requirements). Finally, although
currently there is no direct support for certain formats (e.g. user stories), these could
be supported in future extensions, as discussed in the previous paragraph.

The third limitation, which relates also to the possible inputs of our methodology, is
that of the employed semantics. Although our approach involves structural and seman-
tic matching (using ontologies and WordNet (Miller 1995)), it refrains from applying
semantic inference on the ontologies, which could prove useful for validation purposes
and possibly for revealing missing requirements information. Our approach instead fo-
cuses on functionality co-occurrence among requirements of different projects, there-
fore inference is performed at a data mining level, using association rule mining and
model matching techniques. Though not suited for declarative methodologies that may
require different level of semantics, our approach is however effective for imperative
methodologies, while it can be used as a solid basis for further work. An indicative first
effort towards this direction, which we have implemented for our semantic parsing mod-
ule (Diamantopoulos et al. 2017), involves adding also inferred relationships (e.g. the
phrase “the user can create his/her account” includes not only an Action performed
on “account” but also Ownership of the “account” by the “user”). Finally, a future
extension in this aspect would also involve incorporating semantics in ontology level
and/or further strengthening our semantic similarity methodology using methods such
as salient semantic analysis (Luo et al. 2016) or by measuring similarity in higher orders
of abstraction (Zhang et al. 2014).

The final threat refers to whether our approach is useful in actual scenarios. Although
the evaluation presented in this work does not involve a user study or a time/effort

20

measurement on development teams, the dataset used involves projects of different
companies. Indicatively, our dataset involves also projects from the pilot cases of S-
CASE (Zolotas et al. 2016), including an Internet of Things (IoT) application, a small
Social Network and an Internet as a Service (IaaS) application. In any case, a user study
or a time/effort measurement would be useful so it is considered as future work.

6. Conclusion

As the need for proper reuse of requirements elicitation is becoming more evident, we
have designed a methodology capable of storing software requirements for mining and
reuse purposes. Our model is based on ontologies, thus capturing semantic information
and allowing flexibility and traceability when it comes to maintaining and updating the
original software requirements. We constructed two different mining methodologies for
extracting useful associations from functional requirements and UML models. Our case
study and evaluation illustrates that our approach can be effective for providing useful
recommendations to add to a system or improve on already identified requirements.

Potential future work on our methodology lies in multiple axes, some of which were
explored in Section 5. Apart from these, the ontology models can be extended possibly by
involving the concept of stakeholders in order to further provide recommendations and
corrections according to their preferences. Concerning the recommendations, different
techniques can also be explored to minimize the error rates (Khedr et al. 2017). Addi-
tionally, the semantic matching of the functional requirements mining can be further
improved by incorporating information from online software databases (e.g. GitHub).
Finally, the UML model mining methodology can include parsing different diagram
types, such as UML class or sequence diagrams.

Acknowledgements

Parts of this work have been supported by the FP7 Collaborative Project S-CASE
(Grant Agreement No 610717), funded by the European Commission.

References

Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. 1993. “Mining Association Rules Be-
tween Sets of Items in Large Databases.” In Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’93, New York, NY, USA, 207–216.
ACM.

Agrawal, Rakesh, and Ramakrishnan Srikant. 1994. “Fast Algorithms for Mining Association
Rules in Large Databases.” In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, San Francisco, CA, USA, 487–499. Morgan Kaufmann Pub-
lishers Inc.

Alspaugh, Thomas A., Annie I. Antón, Tiffany Barnes, and Bradford W. Mott. 1999. “An
Integrated Scenario Management Strategy.” In Proceedings of the 4th IEEE International
Symposium on Requirements Engineering, RE ’99, Washington, DC, USA, 142–149. IEEE
Computer Society.

Alves, Vander, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter Sawyer, Paul
Rayson, Christoph Pohl, and Andreas Rummler. 2008. “An Exploratory Study of Informa-
tion Retrieval Techniques in Domain Analysis.” In Proceedings of the 2008 12th International

21

Software Product Line Conference, SPLC ’08, Washington, DC, USA, 67–76. IEEE Com-
puter Society.

Bildhauer, Daniel, Tassilo Horn, and Jurgen Ebert. 2009. “Similarity-driven Software Reuse.”
In Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, CVSM ’09, Washington, DC, USA, 31–36. IEEE Computer Society.

Blok, M. C., and J. L. Cybulski. 1998. “Reusing UML Specifications in a Constrained Appli-
cation Domain.” In Proceedings of the Fifth Asia Pacific Software Engineering Conference,
APSEC ’98, Washington, DC, USA, 196–. IEEE Computer Society.

Boehm, Barry, and Victor R. Basili. 2001. “Software defect reduction top 10 list.” Computer
34: 135–137.

Bonilla-Morales, Belén, Sérgio Crespo, and Clifton Clunie. 2012. “Reuse of Use Cases Dia-
grams: An Approach based on Ontologies and Semantic Web Technologies.” Int. J. Comput.
Sci. 9 (1): 24–29.

Castañeda, Verónica, Luciana Ballejos, Ma. Laura Caliusco, and Ma. Rosa Galli. 2010. “The
Use of Ontologies in Requirements Engineering.” Global Journal of Researches In Engineer-
ing 10 (6).

Castro-Herrera, Carlos, Chuan Duan, Jane Cleland-Huang, and Bamshad Mobasher. 2008.
“Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and In-
clusive Requirements Elicitation Processes.” In Proceedings of the 2008 16th IEEE Inter-
national Requirements Engineering Conference, RE ’08, Washington, DC, USA, 165–168.
IEEE Computer Society.

Chawathe, Sudarshan S., Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
1996. “Change Detection in Hierarchically Structured Information.” SIGMOD Rec. 25 (2):
493–504.

Chen, Kun, Wei Zhang, Haiyan Zhao, and Hong Mei. 2005. “An Approach to Constructing
Feature Models Based on Requirements Clustering.” In Proceedings of the 13th IEEE Inter-
national Conference on Requirements Engineering, RE ’05, Washington, DC, USA, 31–40.
IEEE Computer Society.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Intro-
duction to Algorithms, Third Edition, 3rd ed., 390–396. The MIT Press.

Dermeval, Diego, JÃľssyka Vilela, IgIbert Bittencourt, Jaelson Castro, Seiji Isotani, Patrick
Brito, and Alan Silva. 2015. “Applications of ontologies in requirements engineering: a sys-
tematic review of the literature.” Requirements Engineering 1–33.

Diamantopoulos, Themistoklis, Michael Roth, Andreas Symeonidis, and Ewan Klein. 2017.
“Software Requirements As an Application Domain for Natural Language Processing.” Lang.
Resour. Eval. 51 (2): 495–524.

Diamantopoulos, Themistoklis, Klearchos Thomopoulos, and Andreas L. Symeonidis. 2016.
“QualBoa: Reusability-aware Recommendations of Source Code Components.” In Proceed-
ings of the IEEE/ACM 13th Working Conference on Mining Software Repositories, MSR
’16, 05, 488–491.

Dimaridou, Valasia, Alexandros-Charalampos Kyprianidis, Michail Papamichail, Themistoklis
Diamantopoulos, and Andreas Symeonidis. 2017. “Towards Modeling the User-Perceived
Quality of Source Code using Static Analysis Metrics.” In Proceedings of the 12th Interna-
tional Joint Conference on Software Technologies, ICSOFT, to appear.

Dumitru, Horatiu, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad Mobasher, Car-
los Castro-Herrera, and Mehdi Mirakhorli. 2011. “On-demand Feature Recommendations
Derived from Mining Public Product Descriptions.” In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, New York, NY, USA, 181–190. ACM.

Felfernig, Alexander, Monika Schubert, Monika Mandl, Francesco Ricci, and Walid Maalej.
2010. “Recommendation and Decision Technologies for Requirements Engineering.” In Pro-
ceedings of the 2Nd International Workshop on Recommendation Systems for Software En-
gineering, RSSE ’10, New York, NY, USA, 11–15. ACM.

Finlayson, Mark. 2014. “Java Libraries for Accessing the Princeton Wordnet: Comparison and
Evaluation.” In Proceedings of the Seventh Global Wordnet Conference, edited by Heili Orav,

22

Christiane Fellbaum, and Piek Vossen, Tartu, Estonia, 78–85.
Frakes, William, Ruben Prieto-Diaz, and Christopher Fox. 1998. “DARE: Domain Analysis

and Reuse Environment.” Ann. Softw. Eng. 5: 125–141.
Franck, Stefan. 2017. “Going Agile - Does it work for all?” Accessed 2017-08-03. https://

www.netcentric.biz/blog/Does-Agile-Work-For-The-Enterprise.html.
Ghaisas, S., and N. Ajmeri. 2013. “Knowledge-Assisted Ontology-Based Requirements Evo-

lution.” In Managing Requirements Knowledge, edited by Walid Maalej and Anil Kumar
Thurimella, 143–167. Springer Berlin Heidelberg.

Gomes, Paulo, Pedro Gandola, and Joel Cordeiro. 2007. “Helping Software Engineers Reusing
UML Class Diagrams.” In Proceedings of the 7th International Conference on Case-Based
Reasoning: Case-Based Reasoning Research and Development, ICCBR ’07, Berlin, Heidel-
berg, 449–462. Springer-Verlag.

Happel, Hans-Jörg, and Stefan Seedorf. 2006. “Applications of Ontologies in Software En-
gineering.” In Proceedings of the 2nd International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006), 5–9.

Hummel, Oliver, Werner Janjic, and Colin Atkinson. 2008. “Code Conjurer: Pulling Reusable
Software out of Thin Air.” IEEE Softw. 25 (5): 45–52.

Ingvaldsen, Jon Espen, and Jon Atle Gulla. 2012. “Industrial application of semantic process
mining.” Enterprise Information Systems 6 (2): 139–163.

Kaindl, H., M. Smialek, D. Svetinovic, A. Ambroziewicz, J. Bojarski, W. Nowakowski,
T. Straszak, et al. 2007. Requirements specification language definition: Defining the ReD-
SeeDS languages, Deliverable D2.4.1. Public deliverable. ReDSeeDS (Requirements Driven
Software Development System) Project.

Kelter, Udo, Jürgen Wehren, and JÃűrg Niere. 2005. “A Generic Difference Algorithm for UML
Models.” In Software Engineering, edited by Peter Liggesmeyer, Klaus Pohl, and Michael
Goedicke, Vol. 64 of LNI, 105–116. GI.

Khedr, Ayman E., Amira M. Idrees, Abd El-Fatah Hegazy, and Samir El-Shewy. 2017. “A
proposed configurable approach for recommendation systems via data mining techniques.”
Enterprise Information Systems 0 (0): 1–22.

Konstan, Joseph A., Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gor-
don, and John Riedl. 1997. “GroupLens: Applying Collaborative Filtering to Usenet News.”
Commun. ACM 40 (3): 77–87.

Kumar, Manish, Nirav Ajmeri, and Smita Ghaisas. 2010. “Towards Knowledge Assisted Agile
Requirements Evolution.” In Proceedings of the 2Nd International Workshop on Recommen-
dation Systems for Software Engineering, RSSE ’10, New York, NY, USA, 16–20. ACM.

Leffingwell, Dean. 1997. “Calculating your return on investment from more effective require-
ments management.” American Programmer 10 (4): 13–16.

Li, JianQiang, Ji-Jiang Yang, Chunchen Liu, Yu Zhao, Bo Liu, and Yuliang Shi. 2014. “Exploit-
ing semantic linkages among multiple sources for semantic information retrieval.” Enterprise
Information Systems 8 (4): 464–489.

Lim, Soo Ling, and Anthony Finkelstein. 2012. “StakeRare: Using Social Networks and Col-
laborative Filtering for Large-Scale Requirements Elicitation.” IEEE Trans. Softw. Eng. 38
(3): 707–735.

Lin, Dekang. 1998. “An Information-Theoretic Definition of Similarity.” In Proceedings of the
Fifteenth International Conference on Machine Learning, ICML ’98, San Francisco, CA,
USA, 296–304. Morgan Kaufmann Publishers Inc.

Luo, Jing, Bo Meng, Changqin Quan, and Xinhui Tu. 2016. “Exploiting salient semantic anal-
ysis for information retrieval.” Enterprise Information Systems 10 (9): 959–969.

Maalej, Walid, and Anil Kumar Thurimella. 2009. “Towards a Research Agenda for Rec-
ommendation Systems in Requirements Engineering.” In Proceedings of the 2009 Second
International Workshop on Managing Requirements Knowledge, MARK ’09, Washington,
DC, USA, 32–39. IEEE Computer Society.

Mich, Luisa, Franch Mariangela, and Novi Inverardi Pierluigi. 2004. “Market research for
requirements analysis using linguistic tools.” Requirements Engineering 9 (1): 40–56.

23

https://www.netcentric.biz/blog/Does-Agile-Work-For-The-Enterprise.html
https://www.netcentric.biz/blog/Does-Agile-Work-For-The-Enterprise.html

Miller, George A. 1995. “WordNet: A Lexical Database for English.” Commun. ACM 38 (11):
39–41.

Mobasher, Bamshad, and Jane Cleland-Huang. 2011. “Recommender Systems in Requirements
Engineering.” The AI magazine 32 (3): 81–89.

Montequin, V. R., S. Cousillas, F. Ortega, and J. Villanueva. 2014. “Analysis of the Success
Factors and Failure Causes in Information & Communication Technology (ICT) Projects in
Spain.” Procedia Technology 16: 992–999.

Mylopoulos, John, Jaelson Castro, and Manuel Kolp. 2000. “Tropos: A Framework for
Requirements-Driven Software Development.” In Information Systems Engineering: State
of the Art and Research Themes, 261–273. Springer-Verlag.

Olson, David L., and Subodh Kesharwani. 2009. Enterprise Information Systems: Contempo-
rary Trends and Issues. River Edge, NJ, USA: World Scientific Publishing Co., Inc.

Papamichail, Michail, Themistoklis Diamantopoulos, and Andreas L. Symeonidis. 2016. “User-
Perceived Source Code Quality Estimation based on Static Analysis Metrics.” In 2016 IEEE
International Conference on Software Quality, Reliability and Security, QRS, Vienna, Aus-
tria, 08, 100–107.

Park, Wei-Jin, and Doo-Hwan Bae. 2011. “A Two-stage Framework for UML Specification
Matching.” Inf. Softw. Technol. 53 (3): 230–244.

Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi. 2004. “WordNet::Similarity: Mea-
suring the Relatedness of Concepts.” In Demonstration Papers at HLT-NAACL 2004, HLT-
NAACL–Demonstrations ’04, Stroudsburg, PA, USA, 38–41. Association for Computational
Linguistics.

Robinson, William N., and Han G. Woo. 2004. “Finding Reusable UML Sequence Diagrams
Automatically.” IEEE Softw. 21 (5): 60–67.

Robles, Karina, Anabel Fraga, Jorge Morato, and Juan Llorens. 2012. “Towards an Ontology-
based Retrieval of UML Class Diagrams.” Inf. Softw. Technol. 54 (1): 72–86.

Romero-Mariona, Jose, Hadar Ziv, and Debra J. Richardson. 2008. “SRRS: A Recommendation
System for Security Requirements.” In Proceedings of the 2008 International Workshop on
Recommendation Systems for Software Engineering, RSSE ’08, New York, NY, USA, 50–52.
ACM.

Roth, Michael, Themistoklis Diamantopoulos, Ewan Klein, and Andreas Symeonidis. 2014.
“Software Requirements: A new Domain for Semantic Parsers.” In Proceedings of the ACL
2014 Workshop on Semantic Parsing, Baltimore, MD, June, 50–54. Association for Com-
putational Linguistics.

Sahavechaphan, Naiyana, and Kajal Claypool. 2006. “XSnippet: Mining for Sample Code.”
SIGPLAN Not. 41 (10): 413–430.

Salami, Hamza Onoruoiza, and Moataz Ahmed. 2013. “Class Diagram Retrieval Using Genetic
Algorithm.” In Proceedings of the 2013 12th International Conference on Machine Learning
and Applications - Volume 02, ICMLA ’13, Washington, DC, USA, 96–101. IEEE Computer
Society.

Siegemund, Katja, Edward J Thomas, Yuting Zhao, Jeff Pan, and Uwe Assmann. 2011. “To-
wards ontology-driven requirements engineering.” In Workshop semantic web enabled soft-
ware engineering at 10th international semantic web conference (ISWC), Bonn, .

Smialek, Michal. 2012. “Facilitating Transition from Requirements to Code with the ReD-
SeeDS Tool.” In Proceedings of the 2012 IEEE 20th International Requirements Engineering
Conference (RE), RE ’12, Washington, DC, USA, 321–322. IEEE Computer Society.

Sommerville, Ian. 2010. Software Engineering. 9th ed. Harlow, England: Addison-Wesley.
Thummalapenta, Suresh, and Tao Xie. 2007. “Parseweb: A Programmer Assistant for Reusing

Open Source Code on the Web.” In Proceedings of the 22nd IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’07, New York, NY, USA, 204–213. ACM.

Wang, Y., D. J. DeWitt, and J. Y. Cai. 2003. “X-Diff: an effective change detection algorithm
for XML documents.” In Proceedings 19th International Conference on Data Engineering
(Cat. No.03CH37405), March, 519–530.

Woo, Han G., and William N. Robinson. 2002. “Reuse of Scenario Specifications Using an Auto-

24

mated Relational Learner: A Lightweight Approach.” In Proceedings of the 10th Anniversary
IEEE Joint International Conference on Requirements Engineering, RE ’02, Washington,
DC, USA, 173–180. IEEE Computer Society.

Wynne, Matt, and Aslak Hellesoy. 2012. The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Pragmatic Bookshelf.

Zhang, Hui, Deqing Wang, Li Wang, Zhuming Bi, and Yong Chen. 2014. “A semantics-based
method for clustering of Chinese web search results.” Enterprise Information Systems 8 (1):
147–165.

Zolotas, Christoforos, Themistoklis Diamantopoulos, Kyriakos C. Chatzidimitriou, and An-
dreas L. Symeonidis. 2016. “From requirements to source code: a Model-Driven Engineering
approach for RESTful web services.” Automated Software Engineering .

25

