
A Mechanism for Automatically Summarizing
Software Functionality from Source Code

Christos Psarras, Themistoklis Diamantopoulos and Andreas Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki

Thessaloniki, Greece
cpsarrac@ece.auth.gr, thdiaman@issel.ee.auth.gr, asymeon@eng.auth.gr

Abstract—When developers search online to find software
components to reuse, they usually first need to understand the
container projects/libraries, and subsequently identify the re-
quired functionality. Several approaches identify and summarize
the offerings of projects from their source code, however they
often require that the developer has knowledge of the underlying
topic modeling techniques; they do not provide a mechanism
for tuning the number of topics, and they offer no control
over the top terms for each topic. In this work, we use a
vectorizer to extract information from variable/method names
and comments, and apply Latent Dirichlet Allocation to cluster
the source code files of a project into different semantic topics.
The number of topics is optimized based on their purity with
respect to project packages, while topic categories are constructed
to provide further intuition and Stack Exchange tags are used
to express the topics in more abstract terms.

Index Terms—program understanding, topic modeling, reverse
engineering, software reuse

I. INTRODUCTION

Nowadays, software development requires efficiency and
agility to cope with the ever increasing demand for new fea-
tures. The evolution of the Internet and the introduction of on-
line open-source repositories have led to the establishment of
an effective component-based software engineering paradigm.
In this context, developers are encouraged to reuse software
components that cover parts of the required functionality, in
order to reduce the time and effort required for software
development. This process typically requires identifying the
components to be reused, understanding their functionality and
integrating them in their own source code.

The most commonly reused software components are found
in libraries, which essentially are collections of components
that specialize in a certain area of functionality. Libraries
provide efficient implementations of algorithms, as well as
frameworks to better assist the development process. Reusing
libraries with well-defined APIs (black-box reuse) has been
proven to improve the overall quality of the software product
and reduce costs related to software development and main-
tenance [1]. On the other hand, the interest for integrating
and extending library source code in a per-component basis
(white-box reuse) has also lately increased [1], [2].

The first step towards effectively extending or reusing
third-party source code involves understanding the offered
functionality as well as the software architecture followed.
However, current software projects (including libraries) are

often not well-documented (if at all), thus hindering program
comprehension both for reverse engineering and for reuse
purposes. These challenges are also present after building a
software product, as maintaining it may require considerable
effort; notably, more than half of the maintenance effort is
spent for program comprehension [3].

As a result, lately several research approaches aim to
assist in program understanding using semantic clustering
techniques [4]–[8]. These techniques use the source code
of a software project as input and initially extract semantic
information from source code elements, including variable
names, comments, etc. After that, the extracted information is
organized at package, class and/or method level, and clustering
techniques are applied to identify categories (clusters) of
components that are semantically similar.

Although these approaches can be effective under certain
scenarios, they also have several drawbacks. At first, the under-
lying techniques depend on the proper selection of parameters,
and tuning these parameters for each individual project or
library can pose an important challenge to the developer.
Furthermore, the identified categories are not clearly named
and defined from a semantics perspective, therefore providing
the developer with a source code categorization that lacks an
abstract summarization for each category. Lastly, most ap-
proaches often produce a large number of topics, which may be
hard to follow, while there are also multiple overlaps between
the different topics, further perplexing the categorization.

In this paper, we create a system that analyzes the source
code of a given library, extracts useful information from
variable/method names and comments, and identifies semantic
topics. Upon performing vectorization, our system employs
clustering to produce a set of topics summarizing the source
code. We employ a semantic clustering algorithm that is opti-
mized based on the purity score of the extracted topics, thus
alleviating the need for complex parameter assignment by the
developer, while allowing him/her to easily tune the algorithm
if desired. Furthermore, we aid the developer in this decision
by employing postprocessing techniques to further merge the
extracted topics into categories. Finally, our approach uses
information from online sources to semantically enrich the
topics, by annotating them with keywords that refer to a more
abstract description of the functionality they represent.

The rest of this paper is organized as follows. Section II
provides a literature review of the methodologies used for topic

extraction from source code and highlights the offerings of
our system. The architecture of our system is presented in
Section III along with an analysis of its modules. Section IV
describes our evaluation framework and presents the results
for our methodology as well as a case study for a software
project. Finally, Section V summarizes our work and provides
useful insight for future research.

II. RELATED WORK

Program comprehension is one of the most important areas
of Reverse Engineering and Software Reuse, as it constitutes
the first step towards several actions of the developer. Obvi-
ously, a developer has to understand the offered functionality
and the underlying semantics of a software project, as well as
its structure, before being able to extend it, reuse it or even
maintain it. For projects with minimal or no documentation,
this can be quite a challenging task, as the developer has no
option but to read the source code itself. Thus, lately several
researchers have developed approaches for extracting semantic
information from software engineering data in order to recover
traceability links between documentation and source code,
locate features in source code, and automatically label/group
software components [4]. In the context of this work, we focus
on approaches that extract topics from source code1 in order
to group software components from a functional perspective.

TopicXP [6] is an Eclipse plugin, aimed at assisting the
developer in identifying the functionality provided by a given
software project. It requires as input the source code of the
project under analysis and extracts information from variable
names, method names, and comments. Each Java class is
considered as a document, following a bag of words repre-
sentation. Latent Dirichlet Allocation (LDA) is then used on
the documents in order to identify a set of topics that describe
the different functionalities offered by the project. Java classes
are associated with one or more topics, while the cohesion and
separation values among classes are computed based on the
similarity or dissimilarity of the topics they belong to. The
main disadvantage of this approach is that its effectiveness
relies heavily on the LDA parameters selected by the user,
and especially the number of topics. Setting these parameters
requires clear understanding of their effect and of the intrinsic
features of the source code under analysis.

Linstead et al. [7] circumvented the parameter tuning step
required by LDA by solving a broader type of problem. Instead
of analyzing a single project or library, they created a system
that receives as input a collection of software projects and ap-
plies LDA at class level. The system aims at identifying classes
with similar functionality and relies on the size of the dataset
to set the LDA parameters to fixed values, deemed consistent
enough for a large collection of software components. While
this approach alleviates the user from selecting the proper LDA
parameters, it still lacks an effective tuning mechanism, thus
restricting its applicability on different projects.

1See [5] for an extended review of approaches that use different types of
information, including emails, logs, bug reports, etc.

Another quite interesting approach was proposed by Kuhn
et al. [8]. The authors used Latent Semantic Indexing (LSI)
to reduce the features (terms) describing each document and
applied an average linkage hierarchical clustering algorithm
on the resulting classes-documents. Each topic is described by
the top occurring words of a collection of documents, which
are clustered together. The result of the hierarchical clustering
is then compared to the hierarchical package structure of the
software project, so that each generated topic is evaluated for
its distribution on one or more packages. The authors define
distribution categories for topics spread over a single package
(well-encapsulated), topics covering more than one packages
either with or without a dominant package (cross-cutting or
octopus-like respectively), and topics with very few classes
(black sheep). Although postprocessing is one of the strong
points of the approach, there is again no parameter tuning
(e.g. for the hierarchical clustering), while the number of
the final clusters is fixed. Furthermore, the topics are given
along with the top words, and not further annotated as to the
functionality they describe.

Lately several researchers have also proposed methods for
improving the effectiveness of existing techniques. Nie and
Zhang [9] attempted to optimize LDA-based feature location
using topic cohesion and coupling as computed by a soft-
ware dependency network, while Lawrie et al. [10] proposed
enriching the vocabulary of the source code before extracting
the topics, e.g. by expanding the acronyms in identifier names.
These approaches, however, still do not support the developer
for parameter tuning, while the topics are not postprocessed
and thus do not output an intuitive semantic categorization.

Apart from the aforementioned approaches, several efforts
on the area of topic modeling from source code have involved
using human assistance. Indicatively, Maskeri et al. [11] fo-
cused on extracting business topics and implementation topics
that can be subsequently refined manually, while Saeidi et
al. [12] constructed ITMViz, a tool that accepts feedback
from developers and architects in order to refine the extracted
topics. There are also systems aimed at automatic software
categorization, such as MUDABlue [13] or LACT [14], which
use topic modeling not to distinguish within a project but
to define the high-level category of the project/library as a
whole. Though interesting, these approaches deviate from the
scope of this work, since they confront different challenges and
operate on different granularity levels (project-level instead
of class/package-level). Finally, there are interesting works in
the broad area of semantics for source code, including e.g.
approaches for generating method names [15] or comments
[16]. However, these are applied at method level and deviate
from the topic modeling approaches analyzed in this work.

The reviewed approaches can be effective for certain cases.
However most of them require some type of manual interven-
tion by the developer, either for setting the parameters of the
algorithms [6], [8] or for assessing and possibly refining the
resulting topics [11], [12]. Furthermore, current approaches,
with the exception of the approach of Kuhn et al. [8], do not
perform sufficient postprocessing, resulting in a large unman-

PreprocessorExtractor Vectorizer

Clusterer

Source
Code Purity

Metrics

Package - Topic
Distribution

Topic
WordcloudsOptimizer Presenter

Fig. 1. System Architecture

ageable number of topics, for which no further information is
given other than the top terms per topic.

In this paper we propose a system that overcomes the afore-
mentioned drawbacks. We apply topic modeling for extracting
semantic information from variable/method names and com-
ments and propose determining the optimal number of topics
using a purity metric, with ground truth information from the
package structure of each project. Our methodology involves
also postprocessing the derived topics, thus constructing a
highly intuitive and comprehensive categorization. Finally, the
topics are further enriched using online data, thus providing a
more abstract summary of the represented functionality.

III. METHODOLOGY

The architecture of our system is shown in Figure 1. Our
system comprises 6 modules: the Extractor, the Preprocessor,
the Vectorizer, the Clusterer, the Optimizer, and the Presenter.
As input we use the source code of a software project, which
can be either stored locally or downloaded from an online
repository (Sourceforge2 and GitHub3 connectors were imple-
mented for this cause). The source code is subsequently parsed
by the Extractor that extracts tokens from the names and
types of methods and variables, the comments, and the javadoc
blocks. Subsequently, the Preprocessor constructs a document
(bag-of-words representation) for each class file and applies
all required transformations (e.g. lowercase transformation).

After that, the documents are converted to vectors in a
Vector Space Model (VSM) by the Vectorizer. The Clusterer
continuously performs semantic clustering on the vectors to
extract topics, while the Optimizer computes the purity for
each set of topics given the packages of the source code and
merges topics into categories. Upon determining the optimal
value for purity (that can be overriden by the developer if
required), the Presenter uses online information from Stack
Exchange4 in order to add abstract semantic tags to the topics.
The output is the set of topics and their categories, which
collectively describe the functionality of the project, and the
distribution of topics over packages. The functionality of these
modules is described in detail in the following paragraphs.

2https://sourceforge.net/
3https://github.com/
4https://stackexchange.com/

A. Extractor

The Extractor receives as input the source code of a software
project, or the corresponding Sourceforge/GitHub repository.
Our approach is language-agnostic, as applying it to projects
of any programming language requires only providing a parser
for the language. In this case, we focus on Java projects, thus
all non-java files are discarded and java files are parsed using
the ASTExtractor tool5, which produces the Abstract Syntax
Tree (AST) of each class in XML format. The AST contains all
information present in the java file, including fields, method
definitions and blocks, statements, etc., as well as comments
and javadoc blocks. Given current literature [4]–[8], semantic
information is typically contained in almost all of these types.

B. Preprocessor

We retain the names and types of methods and all variables,
including not only class fields, but also variables inside method
blocks. Comments and javadoc blocks are also retained, while
all other information (e.g. statement types) is discarded at this
point. The Preprocessor receives all aforementioned data and
uses the Python Natural Language Toolkit (NLTK) [17] to con-
struct a bag-of-words representation for each class. The terms
of each document/class undergo a series of transformations.
CamelCase terms are split (e.g. readData is split into read
and data), and all tokens are made lowercase. Javadoc blocks
are cleaned using the regular expressions shown in Table I.

TABLE I
REGULAR EXPRESSIONS FOR JAVADOC CLEANING

Regular Expression Description

([a-zA-Z])/([a-zA-Z]) Separate words split by /
<pre>(.*?)</pre> Remove text of <pre> tags
<code>(.*?)</code> Remove text of <code> tags
\$(.*?)\$ Remove text between $ chars
((.*?)\@(.*?)) Remove emails
\((.*?)at(.*?)dot(.*?)\) Remove emails with at and dot
((.*?)\))|(\((.*?)) Remove parentheses
<(.*?)> Remove text between </>

After that, apostrophe expressions are replaced or removed.
In specific, n’t is replaced by not, ’ll by will, ’ve by

5https://github.com/thdiaman/ASTExtractor

https://sourceforge.net/
https://github.com/
https://stackexchange.com/
https://github.com/thdiaman/ASTExtractor

have, ’re by are, ’d by would, and all other apostro-
phe expressions (e.g. ’s) are removed. Thus, terms such as
we’ll and isn’t are replaced by we will and is not
respectively. The exceptions of won’t and ain’t are also
transformed to will not and is not respectively.

Finally, tokenization is performed to remove any punctua-
tion, while two types of stopwords are removed: stopwords
of the English language using the list of NLTK [17] and Java
stopwords (e.g. for, if, etc.) as defined by the language
specification6. All remaining tokens are lemmatized using the
NLTK lemmatizer (e.g. processes becomes process).

C. Vectorizer

The bag-of-words representation has to be transformed to a
structure suitable for use by the semantic clustering algorithm.
Thus, the Vectorizer receives as input the terms for each
class and constructs a VSM representation, where each term
corresponds to a dimension of the model and each list of
tokens for a document-class corresponds to a vector of the
model. The frequency of a term in a document denotes the
value of the vector in the corresponding dimension. We used
two different vectorization techniques, implemented in scikit-
learn [18]: the count vectorizer and the tf-idf vectorizer. Count
vectorization only takes into account the frequency of each
term in a document, whereas tf-idf normalizes the frequency
and uses also inverse document frequency to balance out the
influence of very rare and very common words.

Consider for example two documents d1 and d2, where
document d1 has the terms [listener event bean
update event] and document d2 has the terms [tree
node tree event tree gui]. The dictionary (dimen-
sions) of the VSM has the terms [bean event gui
update listener node tree] and the count vectors
of d1 and d2 are [1 2 0 1 1 0 0] and [0 1 1 0 0
1 3] respectively.

For the tf-idf vectorizer, the frequency of each term t in a
document d (term frequency - tf) is computed as follows:

tf(t, d) = 1 + log(ft,d) (1)

where ft,d is the absolute frequency of term t in document d.
This normalization is performed to avoid any bias towards
terms appearing very often in a document (e.g. variable
names). After that, this value is also multiplied with the inverse
document frequency (idf) of the term t, which is computed by
the following equation:

idf(t,D) = log(
|D|
|dt|

) (2)

where |D| is the total number of documents in the collection,
and |dt| is the number of documents containing the term t. The
idf ensures that very common words are given low weights,
as they do not contain valuable information for a specific
document. For the example of this subsection, the tf-idf vectors
for documents d1 and d2 are [0.30 0 0 0 0.30 0 0]
and [0 0 0.30 0 0 0.30 0.44] respectively.

6https://docs.oracle.com/javase/tutorial/java/nutsandbolts/ keywords.html

D. Clusterer

Upon having constructed a document-term matrix with the
frequencies of each term in each document, the Clusterer
module produces a set of topics where the documents are
categorized into. Our algorithm of choice is LDA [19], a
generative statistical model where documents are viewed as
mixture of topics and the task is to produce two probability
distributions, one for the occurrence of terms in topics and one
for the occurrence of topics in documents. The first probability
function indicates the top words that describe each topic,
whereas the second denotes how documents are clustered into
topics. Both are assumed to follow a sparse Dirichlet prior
distribution, which is described by the following equation:

Dir(α) =
1

B(α)

K∏
i=1

xai−1
i (3)

where K is the number of topics and α = (a1 . . . aK) is
a vector of the parameters of the distribution. The multivariate
Beta function B functions as a normalizing constant, and is
expressed using the Gamma function (Γ):

B(α) =

∏K
i=1 Γ(ai)

Γ
(∑K

i=1 ai

) (4)

In our implementation, the parameter vectors for the topic-
document and document-term distributions were initialized to
500 divided by the number of topics and to 0.001 respectively,
as these values have been proven effective for multiple applica-
tions [19]. Finally, the algorithm requires as input the number
of topics. We perform several runs for different topic counts,
starting from 10 topics and gradually increasing until we reach
an optimal point determined by the next module (Optimizer),
which produces the final result of the algorithm.

E. Optimizer

The Optimizer module aids the developer to determine
the optimal number of topics for the Clusterer. This is ac-
complished by computing a purity metric on the generated
topics, using as ground truth the package decomposition of the
software project. In specific, we assume that each package of
the project corresponds to different functionality and, thus, dif-
ferent semantics. Although the package structure of a software
project does not strictly translate into semantic partitioning, it
provides a valid proof of concept for tuning the clustering
algorithm, since it provides a measure of the effectiveness of
topic modeling. Package separation offers not only technical
but also semantic information about the project, thus using it
for evaluating source code topic modeling tasks is typical [8].

As the result of the Clusterer is a topic-class distribution,
computing the purity metric requires aggregating it at package
level. Thus, the purity of each topic depends on the classes
and packages to which it spans. For the i-th topic, purity is
computed by the following equation:

Purity(i) =
maxj{|cij |}∑

j |cij |
(5)

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

where cij is the set of classes that belong in package j and
are assigned to topic i. Similarly, the total purity for all topics
is computed using the following equation:

PurityTotal =

∑
i maxj{|cij |}∑

i

∑
j |cij |

(6)

To provide a purity calculation example, we use a distribu-
tion of 3 packages and 3 topics for a project shown in Table II.
For Topic 1 the package with the maximum number of classes
is Package 3, while the total number of classes of all packages
for this topic is 10+10+40 = 60. Thus, the purity for this topic
is 40/60 = 0.667. Similarly, the purity values for the other
two topics are 0.857 and 0.909, respectively. The total purity
is equal to the sum of the number of classes for the optimal
package of each topic, i.e. 40+30+50 = 120, divided by the
total number of classes of all packages (150), which finally
amounts to 120/150 = 0.8.

TABLE II
EXAMPLE TOPICS AND PACKAGES FOR A PROJECT

Topic 1 Topic 2 Topic 3

Package 1 10 30 0
Package 2 10 0 50
Package 3 40 5 5

As with every purity-like metric, our metric ranges from 0
to 1. The metric is based on the assumption that, in general,
every package of a software project should focus on particular
functionality, which can be described using one or more topics.
Thus, ideally, each topic should for the most part include
several classes that belong to the same package. As a result,
we may consider purity as a measure of topic separation; in
this context, if a topic includes more than one package in high
levels of participation, this means that it could be replaced by
more (sub)topics describing separate functionality.

As noted in the previous subsection, the number of topics is
increased by 1 each time, the clustering algorithm is executed,
and the Optimizer calculates the total purity for all topics and
shows a graph to the user, containing all values. The developer
can terminate this process whenever he/she is satisfied by the
level of total purity or wait until the algorithm fully splits the
topics into packages. After that, the configuration (number of
topics) with the maximum purity value is selected, while the
developer is allowed to override this value and thus tune the
algorithm according to his/her preference.

Finally, to provide further intuition to the developer and to
enhance the manageability of the extracted topics, the Opti-
mizer also constructs higher-level categories for the topics. The
categories are actually supersets of topics and are constructed
based on the similarity degrees among topics. At first, for
each topic we keep the top 15 terms. After that, the topics are
given different frequencies/weights according to their position,
i.e. the top term is given frequency equal to 15, the second to
top is given 14, etc. The topics are then vectorized using tf-
idf vectorization (see equations (1) and (2)). Finally, complete
linkage hierarchical clustering is applied on the data to map

the topics into different clusters/topic categories. The distance
function of the clustering was set to the cosine distance,
computed as follows for two topic terms vectors tA and tB:

CosineDistance(tA, tB) = 1− tAtB
T

||tA|| ||tB||
(7)

where tAtBT is the inner product of the vectors, while ||tA||
and ||tB|| are their corresponding magnitudes. The cutoff for
constructing the clusters was set to 0.4, thus any topics with
similarity larger than this value were considered equal.

F. Presenter

Upon having determined the optimal number of topics for
the clustering algorithm, the Presenter applies postprocessing
to the generated topics and presents the results of the analysis.

First, the topics are enriched using semantic information
from Stack Exchange (which has been proven effective for
similar challenges [20]). The semantics of each topic are
represented by its top 5 terms (as extracted by LDA), along
with a term for the name of the software project. These terms
form a query that is sent to the Stack Exchange website, using
the Google Custom Search API7. The query returns relevant
question posts, which are subsequently parsed to extract their
tags and finally for each topic save them ordered according to
the number of questions they appear. Thus, Stack Exchange is
used as a link between programming jargon, found in variable
names and comments, and abstract field descriptors, such as
tags. This way topics are annotated in a more general and
abstract way, which allows developers to easier determine the
functionality that the topics focus on.

Finally, the output for a software project involves the
distribution of packages over topics, the top terms for each
topic and the tags extracted from Stack Exchange visualized
as word clouds, and the topic categories and purity statistics
as computed by the Optimizer.

IV. EVALUATION

In this section we evaluate our work using a dataset of
popular software libraries and illustrate its applicability using
a case study on the Weka machine learning library.

A. Evaluation Framework

Table III presents information about the dataset used for the
evaluation of our system.

TABLE III
DATASET INFORMATION

#Vectorizer Tokens
Name Packages Classes Count Tf-idf

Weka 144 2600 13880 262
SystemML 112 1500 9739 185
DL4J 284 1151 7222 156
Mahout 154 1197 7091 132
Neuroph 155 903 4314 164
Spark 97 682 4561 154

7https://developers.google.com/custom-search/

https://developers.google.com/custom-search/

TABLE IV
LDA RESULTS USING COUNT AND TF-IDF VECTORIZER

Count Tf-idf
Name Topics Purity Categories Topics Purity Categories

Weka 130 0.70 90 140 0.60 95
SystemML 110 0.85 60 130 0.75 85
DL4J 150 0.64 100 200 0.52 120
Mahout 150 0.74 100 160 0.55 100
Neuroph 60 0.95 50 90 0.95 60
Spark 40 0.95 40 50 0.90 40

The dataset consists of 6 machine learning libraries, which
were downloaded from their GitHub repositories. These li-
braries were selected since they are quite popular and at
the same time quite diverse. In specific, the number of
extracted tokens and the size of the libraries vary, which in
turn is expected to affect the semantic information contained
in each class. Furthermore, libraries with different sizes are
expected to influence the performance of our methodology,
since the LDA may encounter more noise when analyzing
larger projects.

B. Evaluation Results

Table IV presents the results of the semantic clustering for
the two different vectorization algorithms. For each library,
we present the maximum purity value, which is also used to
select the number of topics and subsequently the number of
categories.

At first, for both vectorization techniques, we notice that
the number of generated topics has some relation to the
size of each library. For instance, using the count vectorizer,
Weka is described by 130 topics for 2600 classes, whereas
the 682 classes of Spark are distributed over only 40 topics.
However, this relation is not exactly proportional, as DL4J
and Mahout appear to have more topics than Weka for fewer
number of classes. This indicates that these two libraries have a
sparse distribution of functionalities, with many packages each
containing fewer classes. The generated topics however are
similar enough to be mapped into categories, e.g. for Mahout
at least 1/3 of the topics can be clustered with other topics,
for both vectorizer implementations.

The purity scores also seem to follow interesting trends.
Smaller libraries, such as Neuroph or Spark, seem to have
very high purity scores. This indicates that the semantics of
these libraries are properly distributed over packages, which
intuitively should be easier for libraries with smaller size.
Larger libraries, such as Weka or SystemML, are probably
more difficult to organize, given that they have multiple
functionalities, possibly exposed through different APIs. In-
terestingly, DL4J and Mahout seem to have quite low purity
values, indicating once again that each of their packages may
contain many different topics.

The number of topics and the purity score for each library
seem to have similar trends for the two vectorizers. Com-
paring the two techniques indicates that the count vectorizer
achieves higher purity scores than the tf-idf. This is not totally

unexpected as the LDA algorithm is effective enough even
with noisy datasets (e.g. very frequent or very rare terms).
In contrast, the tf-idf vectorizer might reduce the significance
of certain terms that contain important semantic information.
In any case, these results indicate that both algorithms they
can be effectively applied to libraries of varying sizes. The
selection process of the optimal number of topics and the
quality of the generated topics are further assessed in the
following subsection, which includes a case study on the Weka
library.

C. Case Study

Weka was selected as the library of our case study, since it is
a very popular machine learning library that involves several
different types of algorithms, each with its own semantics.
Furthermore, the library offers varying functionality [21],
including a GUI, a CLI, file readers, converters between file
formats, visualizers, etc. Thus, its analysis is expected to reveal
interesting information about the semantics of the library,
pinpoint well-defined packages and packages that may require
refactoring. The analysis is similar for the other five libraries.

To apply our methodology on Weka, we first extract the
AST from its classes and create documents containing se-
mantic information as a bag-of-words representation. After
that, the documents are vectorized using the count and the
tf-idf vectorizers, as defined in subsection III-C. The system
proceeds to cluster the documents initially using 10 topics and
gradually increasing them by 1 until 300 document topics are
reached. The developer is shown a graph (by the Optimizer)
with the overall purity of the topics with respect to packages
and the merged topic categories (see subsection III-E).

The graphs for the two implementations are shown in
Figure 2, where the blue line shows the actual purity value
(or number of categories) for the corresponding number of
topics, while the red line is a quadratic approximation of the
curve. Note that the developer is able, at any time, to stop the
clustering procedure and select the optimal number of topics.
In this case, we have set the maximum number of topics to
300, and then select a point with maximum purity value8.

Concerning the trends of the purity curves, it seems that
the value of purity is initially low, then gradually increases as
the number of topics gets up to a point, and after that point it

8A possible option would be to set the maximum number of topics to be
relative to the number of packages of the software project under analysis.

0.3

0.4

0.5

0.6

0.7

O
v
e
ra

ll
P
u
ri

ty

Overall Purity

Fitted Polynomial

0 50 100 150 200 250 300
Topics

0

50

100

150

200

T
o
p
ic

 C
a
te

g
o
ri

e
s

#Topic Categories

Fitted Polynomial

(a)

0.3

0.4

0.5

0.6

0.7

O
v
e
ra

ll
P
u
ri

ty

Overall Purity

Fitted Polynomial

0 50 100 150 200 250 300
Topics

0

50

100

150

200

T
o
p
ic

 C
a
te

g
o
ri

e
s

#Topic Categories

Fitted Polynomial

(b)

Fig. 2. Purity and Topic Categories for (a) Count Vectorizer and (b) Tf-idf Vectorizer

decreases again. This trend can be interpreted using intuition
from the extreme values for the number of topics. Given e.g. 10
topics, all classes would practically be assigned to these 10
topics, thus each of the formed topics would involve multiple
packages that would result in very low purity value. On the
other hand, having a very large number of topics would force
each topic to include very few classes. Theoretically, having an
extreme scenario, e.g. with one topic per class, could seem to
optimize the purity metric, however note that purity is assessed
on package level and not on class level, thus having too many
topics would again decrease the purity of the clustering.

As a result, and given the graphs of Figure 2, the optimal
number of topics lies somewhere between 130 and 170 topics
for both implementations. In this range, both implementations
achieve expected maximum purity values, considering Weka
is a large library with various functionalities distributed over
multiple packages and subpackages. As noted also in sub-
section IV-B, the count vectorizer seems to achieve higher
purity values than the tf-idf vectorizer, due possibly to the loss
of information by performing tf-idf. As LDA seems capable
of handling the noise of common and rare terms, the two
approaches are practically equivalent. Thus, we select the
count vectorizer approach for the rest of this case study. We
also set the number of topics to 130 as this is the lowest value
for which purity is maximum and is expected to produce a
result that will be manageable and comprehensive.

Given this configuration, an histogram of the participation
(total number of classes) of the 130 topics is shown in Fig-
ure 3, where the topics are sorted in descending participation.
As shown in this Figure, the top 20 topics contain more than
60% of the semantic information. Hence, for the needs of vi-
sualization, we retain these top 20 topics (in terms of absolute
participation). Furthermore, for each package we remove any
topics with participation lower than 1%. In a different scenario,
our system could even be used for identifying these types of
classes and present them to the developer so that they are
refactored.

0 10 20 30 40 50 60 70 80 90 100110120130
Number of Topics

0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

Pa
rti

cip
at

io
n

Fig. 3. Distribution of the Weka packages over the Extracted Topics

Finally, the distribution of the packages of Weka over the top
20 extracted topics is visualized in Figure 4. The distribution
is quite diverse; certain packages span across multiple topics,
while others are more specific. In any case, most topics seem
well-defined. For instance, topic 57 clearly refers to testing,
since it has several relevant keywords (e.g. test, junit), while
at the same time describes a large part of the functionality
defined in the test package. This topic also spans across
multiple packages, which is expected given that tests are often
distributed along with the corresponding components. Other
interesting examples include topics 18 and 99 that refer to gui
functions (and indeed describe a large part of the functionality
of the gui package), topic 49 that refers to file handling, etc.

Concerning the distribution within packages, the results
depend on the specifics of each package. Thus, for example,
the main topic of the associations package is topic 83, which
clearly refers to association rule analysis (as its terms include
item, rule, support, etc.). Further examples include the filters
package or the python/server packages, which involve topics
23 and 92 respectively. The top 5 terms for package 23 may
indeed represent filter operations (e.g. input, batch), while
topic 92 clearly refers to external operations for connecting
to a python server.

57 18 73 99 91 23 87 43 39 49 47 98 127 129 83 92 26 36 64 125

test

server

python

knowledgeflow

gui

filters

experiment

dl4j

distributed

datagenerators

core

clusterers

classifiers

attributeSelection

associations

50% - - - - - - - - 50% - - - - - - - - - -

- - - - - - - - - - - - - - - 100% - - - -

- - - - - - - - - - - - - - - 100% - - - -

- - - - 76% - - - 10% - - - - - - - - - - 14%

- 54% - 23% - - 10% - - - 4% - - 3% - - - - 6% -

51% - - - - 49% - - - - - - - - - - - - - -

- - - - - - 4% 32% - 8% 36% - - - - 16% - - - 4%

- - - - - 14% - - - 29% - - - - - - 57% - - -

- - - - - - 36% - 60% - - - 4% - - - - - - -

86% - - - - - - 7% - - - 7% - - - - - - - -

9% - 70% - - - - 4% - 9% - - - 4% - - 4% - - -

89% 11% - - - - - - - - - - - - - - - - - -

59% - - - - - - 7% - - - 14% 11% - - - - 9% - -

85% - - - - - - 15% - - - - - - - - - - - -

22% - - - - - - - - - - - - - 78% - - - - - 57 (test, suite, junit, runner, textui)

 18 (layout, border, panel, action, listener)

 73 (extension, property, allowed, possible, follow)

 99 (event, listener, message, status, accept)

 91 (step, manager, connection, incoming, payload)

 23 (format, input, batch, illegal, invert)

 87 (property, editor, descriptor, p1, environment)

 43 (predictor, relational, handle, na, nominal)

 39 (job, opts, distributed, map, task)

 49 (file, path, filename, saver, write)

 47 (row, column, matrix, table, col)

 98 (parent, bayes, net, score, operation)

127 (classifier, batch, classification, training, class)

129 (node, child, level, parent, root)

 83 (item, rule, support, association, consequence)

 92 (task, script, status, python, server)

 26 (option, par, passing, valid, describing)

 36 (split, tree, leaf, branch, expression)

 64 (bean, perspective, flow, tab, connection)

125 (log, setting, message, flow, environment)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 4. Distribution of the Weka packages over the Extracted Topics

On the other hand, there are also several packages that
span over multiple topics. This quite expected as they contain
different functionalities. For instance, package core certainly
involves generic functions described better by the generic
topics 73 and 26, while it also contains functions for testing
(topic 57), for data and file handling (topics 43 and 49
respectively), and for tree/graph operations (topic 129). This
is also shown in the classifiers package, since it involves
different types of algorithms. Finally, we may also analyze
each package into its subpackages in order to further decouple
its offered functionality. For example, the subpackage-topic
distribution for the subpackages of gui is shown in Figure 5.

For the gui subpackages, the topics with participation higher
or equal to 1% are 14. Obviously, the dominant topic over all
subpackages is topic 18 that refers to user interface functions.
Other than that, we may note certain subpackages that involve
also large participation from different topics. For example, data
handling subpackages, such as arffviewer or sql, are better
described by topic 47 that has terms referring to data manip-
ulation (row, column, matrix, etc.). Other examples include
the treevisualizer and graphvisualizer subpackages, for which
topic 129 has high participation, as it represents graph/tree
handling functionality. Finally, there are also subpackages
that offer multiple different functionalities, such as the beans
subpackage, which involves events (topic 99), UI environments
(topic 87), jobs (topic 39), and java beans (topic 64).

As discussed in the above paragraphs, most extracted topics
are well-defined, given that the developer may be able to
determine the functionality they cover using the top terms
of each topic. However, at times, when the terms are very
specific, domain knowledge may be required to understand
the functionality of a topic. For instance, given the term
“listener”, an experienced developer may be able to understand
that is should refer to a GUI object. On the other hand,
less experienced developers or simply developers that are not
familiar with GUI design may find this task harder. As part of
our methodology, we confront this challenge by searching in

Stack Exchange (see subsection III-F). Upon issuing queries
for the top 20 extracted topics of our case study, the top 5 tags
for each topic are presented in Table V.

TABLE V
TAGS FOR THE TOPICS OF THE WEKA LIBRARY

No Tags

57 junit, junit4, test-suite, main, jar
18 swing, eclipse, unsupported-class-version, swt, svm
73 jar, machine-learning, visualize, svm, smooks
99 unsupported-class-version, jar, jboss, spring-mvc, spring
91 xml, substring, reflection, invoke, outofboundsexception
23 simpledateformat, reflection, netbeans, libsvm, iso8601
87 servletexception, noclassdeffounderror, netbeans, jstl, jsp
43 linear-regression, r, machine-learning, python, regression
39 emr, hadoop, apache-spark, amazon-emr, hdfs
49 csv, arff, text-mining, text-classification, result
47 r, decision-tree, classification, worksheet-function, rows
98 bayesian-networks, machine-learning, matlab, python, scikit-learn

129 machine-learning, decision-tree, c++, tree, text
83 out-of-memory, heap-memory, garbage-collection,

data-mining, associations
92 python, machine-learning, nlp, data-mining, classification
26 utf-8, search, scala, reflection, r-faq
64 translate3d, time, stl, scope, scheduler

125 machine-learning, jar, classification, data-mining, c#

The tags of the topics are indeed relevant to the top terms
and they provide a higher level of abstraction. For example,
for topic 18 we may see the terms swing and swt, which refer
to GUI frameworks, and thus describe the topic better than the
specific keywords, such as panel or listener. Other high quality
examples include topic 43 that refers to regression, topic 47
that refers to classification, etc. There are also certain low
quality mappings, such as topic 125, which refers to logging
that is relevant to several topics, therefore the Stack Exchange
questions involved very generic tags, such as machine-learning
and data-mining. Additionally, topics 36 and 127 did not return
any matching questions. In any case, even though these tags
cannot directly provide topic names, the developer can use
them along with the top terms for each topic in order to

18 99 23 87 43 39 49 47 127 129 92 36 64 125

visualize

treevisualizer

streams

sql

scripting

knowledgeflow

gui

graphvisualizer

filters

explorer

experiment

ensembleLibraryEditor

converters

boundaryvisualizer

beans

arffviewer

62% - - - 15% - 15% - - - - - 8% -

29% - - - 14% - - - - 43% - 14% - -

- 50% 25% - - - - 25% - - - - - -

70% - - - - - - 30% - - - - - -

50% 1% - - - - 12% - - - 37% - - -

52% - - - - - - - - 7% - 4% 30% 7%

88% - - - - - - 4% - 3% - - 5% -

50% 1% - - 12% - - - - 37% - - - -

100% - - - - - - - - - - - - -

83% 1% - - - - - - 8% - 8% - - -

93% - - - - - - 7% - - - - - -

100% - - - - - - - - - - - - -

100% - - - - - - - - - - - - -

50% - - - 25% - - 25% - - - - - -

23% 46% - 20% - 5% - - - - - - 6% -

50% - - - - - - 50% - - - - - - 18 (layout, border, panel, action, listener)

 99 (event, listener, message, status, accept)

 23 (format, input, batch, illegal, invert)

 87 (property, editor, descriptor, p1, environment)

 43 (predictor, relational, handle, na, nominal)

 39 (job, opts, distributed, map, task)

 49 (file, path, filename, saver, write)

 47 (row, column, matrix, table, col)

127 (classifier, batch, classification, training, class)

129 (node, child, level, parent, root)

 92 (task, script, status, python, server)

 36 (split, tree, leaf, branch, expression)

 64 (bean, perspective, flow, tab, connection)

125 (log, setting, message, flow, environment)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 5. Distribution of the gui subpackages of Weka over the Extracted Topics

better understand the functionality described by each topic.
An indicative visualization that can aid the developer in this
task is provided Figure 6 for four topics.

Each word cloud involves the top 5 terms extracted from
LDA (in blue) and the top 5 tags from Stack Exchange (in
red). The frequency of both types of terms was normalized to
[0, 1], and thus the size of each term reflects its frequency. The
main functionality of the topics can be derived intuitively. For
example, topic 57 clearly refers to testing as it includes terms
such as test or junit with high frequencies. Similarly, the term
swing and the terms border, layout, and panel indicate that
topic 18 refers to GUI operations. This representation is also
useful for more complex topics, such as topic 49 or topic 47.

testsuite

test
textuimain

junit

jar

runner

suite

junit4

(a)

listener

eclipse

panel
swingsvm

border
layout

swt action
(b)

csv

result
filesaver

textclassification
arff

textmining

filename path

(c)

rows

matrix
r

column
rowcoldecisiontree

classification

worksheetfunction
table

(d)

Fig. 6. Word clouds containing topic terms (in blue) and retrieved tags (in
red) for (a) topic 57, (b) topic 18, (c) topic 49, and (d) topic 47

For topic 49, the high-frequency terms file, arff, and csv
indicate that it refers to file I/O operations, while the rest of
the terms (e.g. textmining, textclassification) imply also the
use of text mining. Topic 47 most probably involves data ma-
nipulation, as terms column, row, matrix, etc. have quite high
frequencies, while the rest of the terms (e.g. r, decisiontree,
classification) suggest also classification algorithms however
with generally lower frequencies/probability.

D. Threats to Validity

The main threats to validity and limitations of our approach
involve the choice of evaluation metrics and the lack of
comparison with other approaches. Concerning the metrics,
the purity of the extracted topics with respect to the package
structure of the project may not always be an effective crite-
rion, as the packages may not be well defined. However, as
already noted and supported by current literature [8], package
separation is suitable for assessing topic modeling techniques
as it usually contains useful semantic information about the
project. Further manual inspection on the extracted topics with
respect to their purity has revealed that the metric is indeed
indicative of the quality of the extracted topics.

Concerning the comparison with current approaches, this
has proven troublesome both for the qualitative nature of
the results and for the unavailability of tools relevant to
these approaches. Given the results of the analysis, i.e. the
extracted topic distribution, an effective evaluation method
would have to rely on some objective ground truth, which is
unavailable. This challenge could be overcome by performing
a user study or by using human-annotated topics, which are
interesting ideas that we consider as future work. Finally,
as the unavailability of the source code (or executable) of
current approaches have made any comparison difficult, we
also choose to upload our source code and findings online
(https://github.com/AuthEceSoftEng/CodeSummarizer) to fa-
cilitate future researchers that may face similar challenges.

https://github.com/AuthEceSoftEng/CodeSummarizer

V. CONCLUSION

Nowadays, as software development requires efficiency to
confront the increasing demand for new features, reusing and
extending software projects and libraries has become a norm.
This gave rise to the need for effective analysis tools to
enhance software understanding. However, current tools in
topic modeling for software projects require expert knowledge
of the underlying technologies as well as the system under
analysis. As a result, in this work we implemented a tool that
automates the parameter tuning phase, with emphasis on topic
number selection. Our methodology involves the calculation
of a purity metric that models the distribution of topics with
respect to the packages of the software project under analysis.

After selecting an optimal number of topics, either auto-
matically or by overriding the selected value, the developer is
presented with the distribution of packages over the extracted
topics. Furthermore, the topics are enhanced using semantic
tags from Stack Exchange to provide more abstract informa-
tion about their described functionality. Given the evaluation
of our system and the designed case study, it is clear that the
extracted topics are indeed representative of the functionalities
provided by the software project under analysis. Furthermore,
the results indicate that the tags can be helpful in some cases
in order to better understand the topics.

Future work includes experimenting with different topic
modeling approaches, such as lda2vec, and/or integrating the
LDA parameters in the optimization process, based on the
purity metric. Additionally, as the purity metric may rely
on the package structure dictated by the developer of the
project, we plan to further extend our ground truth using also
information from the derived topic categories, instead of only
presenting them to aid the developer in the selection of the
number of topics. The semantic enhancement of topics using
tags can also be further improved by constructing queries with
more terms (e.g. including also package names) and/or issuing
them in different services. Finally, our methodology can be
adapted to identify packages that could be merged together
and packages that should be divided into subpackages, by
analyzing the topic distribution of each package.

ACKNOWLEDGMENT

This work has been co-financed by the European Regional
Development Fund of the European Union and Greek national
funds through the Operational Program Competitiveness, En-
trepreneurship and Innovation, under the call RESEARCH –
CREATE – INNOVATE (project code: T1EDK-02296).

REFERENCES

[1] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irl-
beck, “On the Extent and Nature of Software Reuse in Open Source Java
Projects,” in Proceedings of the 12th International Conference on Top
Productivity Through Software Reuse, ser. ICSR’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 207–222.

[2] W. Schwittek and S. Eicker, “A Study on Third Party Component Reuse
in Java Enterprise Open Source Software,” in Proceedings of the 16th
International ACM Sigsoft Symposium on Component-based Software
Engineering, ser. CBSE ’13. New York, NY, USA: ACM, 2013, pp.
75–80.

[3] P. Bourque and R. E. Fairley, Eds., SWEBOK: Guide to the Software
Engineering Body of Knowledge, 3rd ed. Los Alamitos, CA, USA:
IEEE Computer Society, 2014.

[4] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to Effectively Use Topic Models for Software
Engineering Tasks? An Approach Based on Genetic Algorithms,” in
Proceedings of the 2013 International Conference on Software Engi-
neering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp.
522–531.

[5] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A Survey on the Use
of Topic Models when Mining Software Repositories,” Empirical Softw.
Engg., vol. 21, no. 5, pp. 1843–1919, Oct. 2016.

[6] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP: Ex-
ploring Topics in Source Code Using Latent Dirichlet Allocation,” in
Proceedings of the 2010 IEEE International Conference on Software
Maintenance, ser. ICSM ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–6.

[7] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
Concepts from Code with Probabilistic Topic Models,” in Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’07. New York, NY, USA: ACM, 2007,
pp. 461–464.

[8] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic Clustering: Identifying
Topics in Source Code,” Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243,
Mar. 2007.

[9] K. Nie and L. Zhang, “Software Feature Location Based on Topic Mod-
els,” in Proceedings of the 2012 19th Asia-Pacific Software Engineering
Conference - Volume 01, ser. APSEC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 547–552.

[10] D. Lawrie, C. Uehlinger, and D. Binkley, “Vocabulary Normalization
Improves IR-based Concept Location,” in Proceedings of the 2012 IEEE
International Conference on Software Maintenance, ser. ICSM ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 588–591.

[11] G. Maskeri, S. Sarkar, and K. Heafield, “Mining Business Topics in
Source Code Using Latent Dirichlet Allocation,” in Proceedings of the
1st India Software Engineering Conference, ser. ISEC ’08. New York,
NY, USA: ACM, 2008, pp. 113–120.

[12] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen, “ITMViz: Interactive
Topic Modeling for Source Code Analysis,” in Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension, ser.
ICPC ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 295–298.

[13] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue:
An Automatic Categorization System for Open Source Repositories,” J.
Syst. Softw., vol. 79, no. 7, pp. 939–953, Jul. 2006.

[14] K. Tian, M. Revelle, and D. Poshyvanyk, “Using Latent Dirichlet
Allocation for Automatic Categorization of Software,” in Proceedings
of the 2009 6th IEEE International Working Conference on Mining
Software Repositories, ser. MSR ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 163–166.

[15] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings
of the 33rd International Conference on Machine Learning, ser. ICML
’16, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York,
New York, USA: PMLR, 20–22 Jun 2016, pp. 2091–2100.

[16] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-
prehension, ser. ICPC ’18. New York, NY, USA: ACM, 2018, pp.
200–210.

[17] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, 1st ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2009.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[20] D. Wu, X.-Y. Jing, H. Chen, X. Zhu, H. Zhang, M. Zuo, L. Zi, and
C. Zhu, “Automatically answering api-related questions,” in Proceedings
of the 40th International Conference on Software Engineering, ser. ICSE
’18. New York, NY, USA: ACM, 2018, pp. 270–271.

[21] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA Workbench.
Online Appendix for “Data Mining: Practical Machine Learning Tools
and Techniques”, Morgan Kaufmann, Fourth Edition,” 2016.

