
Employing Contribution andQuality Metrics forQuantifying
the Software Development Process

Themistoklis Diamantopoulos, Michail D. Papamichail, Thomas Karanikiotis, Kyriakos C.
Chatzidimitriou, and Andreas L. Symeonidis

(thdiaman,mpapamic,thomas.karanikiotis,kyrcha)@issel.ee.auth.gr,asymeon@eng.auth.gr
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki

Thessaloniki, Greece

ABSTRACT
The full integration of online repositories in the contemporary
software development process promotes remote work and remote
collaboration. Apart from the apparent benefits, online repositories
offer a deluge of data that can be utilized tomonitor and improve the
software development process. Towards this direction, we have de-
signed and implemented a platform that analyzes data from GitHub
in order to compute a series of metrics that quantify the contribu-
tions of project collaborators, both from a development as well as an
operations (communication) perspective. We analyze contributions
in an evolutionary manner throughout the projects’ lifecycle and
track the number of coding violations generated, this way aspiring
to identify cases of software development that need closer moni-
toring and (possibly) further actions to be taken. In this context,
we have analyzed the 3000 most popular Java GitHub projects and
provide the data to the community.

KEYWORDS
mining software repositories, contribution analysis, DevOps, GitHub
issues, code violations

1 INTRODUCTION
The emergence of the open-source initiative has changed the way
software is developed. Software development is now a collabora-
tive process, taking place in online code hosting facilities, such as
GitHub, Bitbucket or GitLab. And although software engineering
has always relied on effective teamwork, today more than ever we
are able to observe this process transparently and at such a massive
scale. Indicatively, GitHub at the time of writing hosts more than
100 million repositories from more than 30 million developers1.

In this collaborative context, software projects are the summa-
tion of different contributions, which are often not limited to those
of specific team members, but extend also to those of outside col-
laborators. Collaboration often expands to multiple axes, including
not only writing code, but also augmenting documentation, propos-
ing the development of new features, discussing any issues raised
by end-users, resolving bugs, etc. This information, is available in
different formats (i.e. source code, commits, issues, pull requests,
etc.), and tracks the whole timeline of the project.

Keeping track of these data is quite beneficial for various reasons.
Apart from collaboration, versioning, backup/restore, etc., these
data constitute what we may call the ‘story’ of the project, and
can be harnessed to answer questions such as ‘what issues have
arisen?’, ‘who has worked on what?’, ‘how does heavy workload
1https://octoverse.github.com/

affects quality?’, or even ‘who is the most suitable developer for
fixing this bug?’. This story is often considered as an integral part
of DevOps, an agile-oriented methodology that combines software
development (Dev) with operations (Ops) with the aim of building
high quality software and reducing the time between production
releases [2, 13]. One of the most important aspects of DevOps is the
measurement of the software development process2. By doing so
(and hence by answering questions like the ones mentioned above),
one can increase the efficiency of product development [19].

Against this background, we have built a platform that crawls
the infrastructure of GitHub, analyzes all contributions-related data
(sourec code, commits, issues, contributors, etc.) in an evolution-
ary manner and calculates both contributions and quality related
metrics that can be used to answer multiple research questions
relevant to the software development process. Our platform cur-
rently includes the 3000 most popular Java projects of GitHub3.
The constructed dataset contains all the analysis results regarding
the crawled projects and is available as a MongoDB dump, thus
allowing one click set-up and advanced querying capabilities.

2 ARCHITECTURE AND TOOLS
Figure 1 depicts the architecture of our platform, which comprises
four modules: the Data Downloader, the MongoDB Management
System, the Contributions Analyzer, and the Quality Analyzer. These
modules are presented in detail in the following paragraphs.

Data Downloader. It is a Python application that uses the GitHub
API4 in order to retrieve all information offered for a given reposi-
tory. This information includes commits, issues, commit comments,
issue comments, issue events, contributors information, repository
information, as well as the source code of the repository. Apart from
downloading the data as raw .json files, the data downloader of-
fers integration capabilities with MongoDB, which can be used for
storing, retrieving and querying the data.

MongoDB Management System. We use MongoDB as our data-
base management system, which contains all the raw data retrieved
from GitHub along with the results of the contributions and the
quality analysis. The schema of our database is shown in Figure 2.
Data are organized in ten collections, each referring to a different
type of information (commits, issues, statistics, etc.). In an effort
to provide efficient data filtering/retrieval capabilities, the docu-
ments of all collections are connected through certain attributes

2The others are collaboration, automation, and monitoring [14].
3Although our methodology is mostly agnostic, we use Java repositories as a proof of
concept to account for commit metrics and code violations.
4https://developer.github.com/v3/

https://octoverse.github.com/
https://developer.github.com/v3/

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Diamantopoulos et al.

Data
Downloader

MongoDB
GitHub

 Contributions
 Analyzer

Dev
Metrics

Ops
Metrics

 Quality
 Analyzer

Data
Downloader

MongoDB
GitHub

 Contributions
 Analyzer

Dev
Metrics

Ops
Metrics

 Quality
 Analyzer

Coding Violations

Performance
Error Prone
Code Style
Multithreading
Best Practices
Security
Design
Documentation

DevOps Data

Commits

Commit Comments

Issues

Issue Comments

Issue Events

Projects Information

Contributors Information

General Statistics

DevOps Data

Commits

Commit Comments

Issues

Issue Comments

Issue Events

Projects Information

Contributors Information

General Statistics

Figure 1: Architecture Overview

(the equivalent of foreign keys in relational database terms) such
as the repository name, the commit sha etc. We have also created
indexes for these attributes, to enable fast searching (e.g. searching
by repository name in the commits collection that contains approx-
imately 4M documents takes no more than 50ms on average). Our
design choice for using MongoDB originates from the fact that it
provides schema less architecture with powerful scaling capabilities
along with robust querying service.

Contributions Analyzer. It uses the information retrieved from
GitHub in order to compute a series of metrics that quantify the
activity of each contributor both in terms of development and
operations. Table 1 presents the calculated metrics along with their
category (Dev for “development” or Ops for “operations”) and their
computation interval (Weekly or Full). Weekly denotes that the
respective metric is computed for every week of the project lifecycle
(starting from its day one until the present day), while Full refers
to metrics that are computed aggregatively taking into account all
project data. The results are stored in the collection “metrics”. Given
that each contributor may contribute in more than one repositories,
each document refers to the combination contributor-repository.

The rationale behind the selection of these metrics originates
from their use in current research [9, 12, 15, 16, 20] from a develop-
ment and operations perspective. For instance, several development-
oriented metrics, such as commits_authored, file additions/dele-
tions/modifications, etc., are often used to measure productivity
[12] or even to predict defects [15]. Change burst metrics, such as
change_bursts, average_burst_length, etc., have also been shown to
be useful in this aspect [16]. Similar challenges can also be addressed
using early and late contributions (early/late additions/deletions),
which are the ones that belong in the first 20% and the last 20% of
the project lifecycle, respectively (late activities are often proven to
be quite different from early ones [16]). Operations-oriented met-
rics, such as the issues_opened, issues_closed, issues_participated
(i.e. the issues that are created/deleted/modified by the developer as
well as the ones in which he/she is mentioned by others), etc., are
typically used to quantify the involvement, and generally interpret
the profile characteristics, of the developer [9, 20].

Quality Analyzer. Effective monitoring of the software develop-
ment process requires analyzing the quality of the final product. In

Table 1: Contribution Metrics

Metric Dev Ops Weekly Full

change_bursts × – – ×

average_burst_length × – – ×

largest_burst_length × – – ×

early_{additions, deletions} × – – ×

late_{additions, deletions} × – – ×

commits_authored × – × ×

issues_{opened, closed} – × × ×

issues_closed_per_day – × × ×

issues_participated – × × ×

average_comments_per_issue – × × ×

average_issues_comments_length – × × ×

average_time_to_close_issues – × × ×

total_file_{additions, deletions} × – × ×

total_file_{modifications, changes} × – × ×

total_lines_of_code_changed × – × ×

tot_{additions, deletions} × – × ×

dev_activity_period_in_days × – × ×

dev_inactive_period × – – ×

ops_activity_period_in_days – × × ×

an effort to account for the evolution of the product throughout its
lifecycle, we perform static analysis on a weekly basis (we perform
full analysis on the last commit of each week) in order to identify
violations of widely accepted coding practices. We employ PMD5

in order to identify violations that cover various source code prop-
erties (such as Performance, Code Style, Security, etc.). The tool
assigns each identified violation with a priority from 1 (of utmost
importance) to 5 (simple suggestion). Using these priorities, the
reported violations are classified into three categories based on
their impact: Minor (priorities 4 and 5), Major (priorities 2 and 3),
and Critical (priority 1), before stored in the Violations collection.
Finally, towards ensuring full traceability, for each identified viola-
tion, we store the full path of the respective source code file along
with the line number.

5https://pmd.github.io/

https://pmd.github.io/

Employing Contribution andQuality Metrics for Quantifying the Software Development Process MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

_id
average_burst_length
average_comments_per issue
average_issues_comments_length
average_time_to_close_issues
change_bursts
commits_authored
dev_activity_period_in_days
dev_inactive_period_within_active_period
early_additions
early_deletions
issues_closed
issues_closed_per_day
issues_ opened
issues_pa rticipated
largest_burst_length
late_additions
late_deletions
login
ops_activity_period_in_days
repo_name
tot_additions
tot_ deletions
total_file_additions
total_file_changes
total_file_deletions
total_file_modifications
total_lines_of_code_changed
weeks
 week_0001
 start/end
 dev_activity_period_in_days
 ops_activity_period_in_days
 total_lines_of_code_changed
 total_file_modifications
 total_file_additions
 issues_closed
 issues_opened
 commits_authored
 ...

str
num

double
int32

double
num
int32
int32
int32
int32
num
int32

double
int32
int32
num
int32
int32

str
int32

str
int32
int32
int32
int32
num
int32
int32

doc
doc

ts
num
num
int32
int32
int32
int32
int32
int32

...

metrics

_id
ETag
archive_url
archived
assignees_url
blobs url
branches_url
clone url
collaborators url
comments url
commits_url
compare_url
contents_url
contributors url
created at
default_branch
deployments_url
description
downloads url
...

int32
str
str

bool
str
str
str
str
str
str
str
str
str
str
str
str
str
str
str
...

projects

_id
avatar_url
contributions
events_url
followers_url
following_url
gists_url
gravatar_id
html_url
id
login
node_id
organizations_url
received_events_url
repo_name
repos_url
site_admin
starred_url
subscriptions_url
type
url

str
str

int32
str
str
str
str
str
str

int32
str
str
str
str
str
str

bool
str
str
str
str

contributors

_id
author_association
body
created_at
html_url
id
issue_url
node_id
repo_name
updated_at
url
user

int32
str
str
str
str

int32
str
str
str
str
str

doc

issueComments

_id
ETag
assignee
assignees
author_association
body
closed_at
closed_by
comments
comments_url
created_at
events_url
html_url
id
labels
labels_url
locked
milestone
node_id
number
repo_name
repository_url
state
title
updated_at
url
user

int32
str
str
arr
str
str
str

doc
int32

str
str
str
str

int32
arr
str

bool
doc
str

int32
str
str
str
str
str
str

doc

issues

_id
commit_comments
commits
contributors
issue_comments
issue_events
issues
repo_name

int32
int32
int32
int32
int32
int32
int32

str

stats_id
ETag
author
comments url
commit
committer
files
html url
node id
...

str
str

doc
str

doc
doc
arr
str
str
...

commits

_id
author association
body
commit id
...

int32
str
str
str
...

commitComments

_id
actor
commit_id
commit_url
created_at
event
id
issue
node_id
repo_name
url

int32
doc
str
str
str
str

int32
doc
str
str
str

issueEvents

repo_name

commit_sha

repo_name

weeks

user_login

repo_name

issue_num

issue_num

_id
repo_name
week
shaOfLastCommit
violationsInfo
 PMD_NP
 count
 occurrences
 #index
 filename
 lines
 category
 title
 severity
 PMD_APMP
 count
 occurrences
 #index
 filename
 lines
 category
 title
 severity
 ...

str
str
str
str

doc
doc

int32
arr
obj
str
arr
str
str
str

doc
int32

arr
obj
str
arr
str
str
str
...

violations

repo_name

repo_name

Figure 2: Database Schema Overview (not all connections are shown)

3 DATASET CONSTRUCTION
In a development community that is continuously moving towards
component reuse, online software repositories constitute an inte-
gral part of the software development process. While this poses a
series of challenges in terms of managing software development, it
also provides a series of opportunities. These opportunities orig-
inate from the deluge of available data that enable quantifying
the software development process and building effective evalua-
tion models. Towards this direction, we extracted data residing in
GitHub in order to construct a dataset that can be used for these
purposes. Any challenges faced during this process are discussed
in the following paragraphs.

Which projects to analyze. Our primary target was to create a
dataset that covers a wide range of different development scenarios.
To that end, we chose to analyze 3,000 projects, a number large
enough to include projects that exhibit big differences in size, com-
plexity, number of contributors, and duration. In an effort to be
systematic in our analysis we used popularity (reflected by the
number of stars) as our selection criterion and Java as the primary
programming language.

Which metrics to compute. Monitoring the software development
process is a non-trivial task that involves a series of parameters

that need to be taken into consideration. Such parameters are the
individual characteristics of each software project (inner structure,
scope/area of application, time/resources constraints, etc.), along
with the individual characteristics of each contributor (role in the
project, collaboration in more than one projects, tendency to work
in bursts, etc.). As a result, we resort in selecting 25 different metrics
(see Table 1) that thoroughly describe the profile of each contributor
both in terms of development-oriented and operations-oriented
activities. On top of that, given the fact that a contributor can
also change role within a project and thus a single value for a
certain metric cannot fully reflect his profile over time, we perform
a periodic analysis and compute each metric on a weekly basis.

Enable tailor-made dataset construction. One of the main targets
of our approach is to provide a dataset that can be flexible enough to
be used by researchers for elaborating on a wide range of research
questions. To that end, we decided to facilitate the construction
of tailor-made datasets by storing the data into a database that
allows effective querying. This infrastructure along with the wide
variety of stored information (metrics, statistics, etc.), regarding
both repositories and contributors, enable effective data filtering
based on the individual needs and objectives of each researcher. Two
sample queries that can be used for dataset construction purposes
are shown in Figure 3. The first filters repositories with certain

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Diamantopoulos et al.

characteristics (number of contributors and commits), while the
second targets at finding the occurrences of a certain violation over
the lifecycle of a certain project.

// Repos with more than 20 contributors and 1,000 commits
db.getCollection('stats').find({

"$and":[
{"contributors": {"$gt": 20}},
{"commits": {"$gte": 1000}}

]
})

// Get the total number of weeks a certain violation occurred in a project
db.getCollection('violations').aggregate([

{ "$match": { "repo_name": "the repository name" } },
{ "$match": { "violationsInfo.ViolationID": { "$exists": True } } },
{ "$group": { "_id": "null", "total": { "$sum": 1 } } }

])

Figure 3: Example queries

Finally, our dataset is available online in the form of a MongoDB
data dump6. Certain statistics are shown in Table 2.

Table 2: Dataset Statistics

Metric Value

Number of GitHub projects 3,000
Number of Commits 3,948,945
Number of Commit Comments 41,099
Number of Issues 819,031
Number of Issue Comments 1,898,101
Number of Issue Events 2,300,490
Number of Contributors 62,597
Lines of Code Analyzed 5,216,361,494

Total database size 125GB (19.8GB compressed)

4 IMPACT AND RESEARCH DIRECTIONS
Our dataset can be used to confront several challenges in current
research. At first, given that it comprises various software process
metrics along with the occurrence of multiple violations, it could be
employed for extracting the behavior of the metrics and studying
their co-evolution. For instance, one could study the correlation
between issues and GitHub stars/forks [5], explore the effects of
issue labeling on the time required to resolve them [11], or even
determine whether resolving issues as early as possible is beneficial
for the project [6]. Similar directions can be pursued for commits
[4, 21]; e.g. commit-level metrics, such as the time between con-
secutive commits or the changes between releases, which can be
used to determine the habits of project developers and align them
to produce a better plan of actions [21] and/or quantify the impact
of the design choices on the quality of the final product [8].

6http://doi.org/10.5281/zenodo.2556151

Developer behavior can also be analyzed in several other axes.
Contribution metrics, such as the number of commits relevant to
resolving bugs, the number of issue/commit comments and their
distribution within the week (e.g. weekday or weekend), etc., have
been proven useful for assessing the involvement of each devel-
oper [12] and for distinguishing among full-time contributors and
volunteers in open source projects [17]. In the same context, one
can also identify the roles of developers in a project (e.g. front-
end engineer, back-end engineer, database engineer), by determin-
ing the source code components associated with each developer
[10, 18]. Another novel idea in this field would be to extract higher
level roles, indicating whether an engineer is more development-
oriented (e.g. by focusing on commits, development activity, etc.)
or more operations/process-oriented (e.g. by often participating
on issues, exhibiting high response times, etc.), or even whether
he/she achieves the DevOps sweet spot (i.e. an effective mixture of
the above contribution patterns).

The integration of semantics can also produce interesting find-
ings about the expertise of individual developers. Our dataset in-
cludes source code (e.g. commits), textual (e.g. commit/issue com-
ments), and process (e.g. bursts, activity periods) data that can be
mined to extract the areas of expertise of each developer [9]. This
information can be then used to construct developer profiles [9]
or even visual resumes [20] and find the best match for the team.
In an even more practical context, one can also search within a
project for “the right developer for the job”. Research in the field of
automated bug/feature assignment is broad and current methods
use several metrics found in our dataset, including not only issue-
related data (issue text, keywords) [1, 22], but also information
about the acquaintance of developers with specific components [3]
or even about their latest activity in the project [7].

5 CONCLUSIONS
Mining contribution data from GitHub can offer useful insights on
the software development process and produce practical results
that may be used to improve it. In this work, we have pursued this
research direction by creating a platform that can be employed to
produce useful metrics. Furthermore, we have proposed a set of
metrics and built a large dataset that can be used to answer multiple
research questions. As future work, we plan to augment our dataset,
by adding more repositories and, most importantly, more metrics
that can cover additional development scenarios, such as supporting
various programming languages (e.g. Python, JavaScript). Finally,
it would be interesting to study the co-evolution of these metrics
with regard to metrics relevant to the quality of the projects.

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who Should Fix This Bug?.

In Proceedings of the 28th International Conference on Software Engineering (ICSE
’06) (Shanghai, China). ACM, New York, NY, USA, 361–370. https://doi.org/10.
1145/1134285.1134336

[2] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective (1st ed.). Addison-Wesley Professional, Reading, Massachusetts, USA.

[3] Pamela Bhattacharya, Iulian Neamtiu, and Christian R. Shelton. 2012. Automated,
Highly-accurate, Bug Assignment UsingMachine Learning and Tossing Graphs. J.
Syst. Softw. 85, 10 (Oct. 2012), 2275–2292. https://doi.org/10.1016/j.jss.2012.04.053

[4] Marco Biazzini and Benoit Baudry. 2014. “May the Fork Be with You”: Novel
Metrics to Analyze Collaboration onGitHub. In Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics (WETSoM 2014) (Hyderabad,
India). ACM,NewYork, NY, USA, 37–43. https://doi.org/10.1145/2593868.2593875

http://doi.org/10.5281/zenodo.2556151
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1016/j.jss.2012.04.053
https://doi.org/10.1145/2593868.2593875

Employing Contribution andQuality Metrics for Quantifying the Software Development Process MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

[5] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques
Klein, and Yves Le Traon. 2013. Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub. In Proceedings of the 2013 IEEE
24th International Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society, Washington, DC, USA, 188–197. https://doi.org/10.1109/
ISSRE.2013.6698918

[6] J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi. 2015. Exploring the use
of labels to categorize issues in Open-Source Software projects. In Proceedings of
the 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE Computer Society, Washington, DC, USA, 550–554.
https://doi.org/10.1109/SANER.2015.7081875

[7] Konstantinos Christidis, Fotis Paraskevopoulos, Dimitris Panagiotou, and Gre-
goris Mentzas. 2012. Combining Activity Metrics and Contribution Topics for
Software Recommendations. In Proceedings of the Third International Workshop
on Recommendation Systems for Software Engineering (RSSE ’12) (Zurich, Switzer-
land). IEEE Press, Piscataway, NJ, USA, 43–46.

[8] WF Gonçalves, CB de Almeida, LL de Araújo, MS Ferraz, RB Xandú, and I de
Farias Junior. 2017. The Impact of Human Factors on the Software Testing Process:
The Importance of These Factors in a Software Testing Environment. Journal of
Information Systems Engineering & Management 2, 4 (2017), 24.

[9] Gillian J. Greene and Bernd Fischer. 2016. CVExplorer: Identifying Candidate
Developers by Mining and Exploring Their Open Source Contributions. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016) (Singapore, Singapore). ACM, New York, NY, USA, 804–
809. https://doi.org/10.1145/2970276.2970285

[10] S. Li, H. Tsukiji, and K. Takano. 2016. Analysis of Software Developer Activity on a
Distributed Version Control System. In Proceedings of the 2016 30th International
Conference on Advanced Information Networking and Applications Workshops
(WAINA). IEEE Computer Society, Washington, DC, USA, 701–707. https://doi.
org/10.1109/WAINA.2016.107

[11] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu. 2018. Exploring the Charac-
teristics of Issue-Related Behaviors in GitHub Using Visualization Techniques.
IEEE Access 6 (2018), 24003–24015. https://doi.org/10.1109/ACCESS.2018.2810295

[12] Jalerson Lima, Christoph Treude, Fernando Figueira Filho, and Uira Kulesza. 2015.
Assessing Developer Contribution with Repository Mining-based Metrics. In
Proceedings of the 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME ’15). IEEE Computer Society, Washington, DC, USA, 536–540.
https://doi.org/10.1109/ICSM.2015.7332509

[13] Mike Loukides. 2012. What is DevOps? O’Reilly Media, Inc., Champaign, IL,
USA.

[14] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. 2015. Dimensions of
DevOps. In Proceedings of the Agile Processes in Software Engineering and Extreme
Programming. Springer International Publishing, Cham, 212–217.

[15] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In Proceedings of the 30th International Conference on Software
Engineering (Leipzig, Germany) (ICSE ’08). ACM, New York, NY, USA, 181–190.
https://doi.org/10.1145/1368088.1368114

[16] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and
Brendan Murphy. 2010. Change bursts as defect predictors. In Proceedings of the
21st IEEE International Symposium on Software Reliability Engineering (ISSRE).
IEEE, IEEE Computer Society, Washington, DC, USA, 309–318.

[17] Saya Onoue, Hideaki Hata, and Ken-ichi Matsumoto. 2013. A Study of the
Characteristics of Developers’ Activities in GitHub. In Proceedings of the 2013
20th Asia-Pacific Software Engineering Conference (APSEC ’13) - Volume 02. IEEE
Computer Society, Washington, DC, USA, 7–12. https://doi.org/10.1109/APSEC.
2013.104

[18] Michail D. Papamichail, Themistoklis Diamantopoulos, Vasileios Matsoukas,
Christos Athanasiadis, and Andreas L. Symeonidis. 2019. Towards Extracting
the Role and Behavior of Contributors in Open-source Projects. In Proceedings of
the 14th International Conference on Software Technologies (ICSOFT). SciTePress,
Prague, Czech Republic, 536–543. https://doi.org/10.5220/0007966505360543

[19] James Roche. 2013. Adopting DevOps Practices in Quality Assurance. Commun.
ACM 56, 11 (Nov. 2013), 38–43. https://doi.org/10.1145/2524713.2524721

[20] A. Sarma, X. Chen, S. Kuttal, L. Dabbish, and Z. Wang. 2016. Hiring in the Global
Stage: Profiles of Online Contributions. In Proceedings of the 2016 IEEE 11th
International Conference on Global Software Engineering (ICGSE). IEEE Computer
Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/ICGSE.2016.35

[21] Yang Weicheng, Shen Beijun, and Xu Ben. 2013. Mining GitHub: Why Commit
Stops – Exploring the Relationship Between Developer’s Commit Pattern and File
Version Evolution. In Proceedings of the 2013 20th Asia-Pacific Software Engineering
Conference (APSEC ’13) - Volume 02. IEEE Computer Society, Washington, DC,
USA, 165–169. https://doi.org/10.1109/APSEC.2013.133

[22] X. Xia, D. Lo, X. Wang, and B. Zhou. 2013. Accurate developer recommendation
for bug resolution. In Proceedings of the 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE Computer Society, Washington, DC, USA, 72–81.
https://doi.org/10.1109/WCRE.2013.6671282

https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1109/SANER.2015.7081875
https://doi.org/10.1145/2970276.2970285
https://doi.org/10.1109/WAINA.2016.107
https://doi.org/10.1109/WAINA.2016.107
https://doi.org/10.1109/ACCESS.2018.2810295
https://doi.org/10.1109/ICSM.2015.7332509
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1109/APSEC.2013.104
https://doi.org/10.1109/APSEC.2013.104
https://doi.org/10.5220/0007966505360543
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1109/ICGSE.2016.35
https://doi.org/10.1109/APSEC.2013.133
https://doi.org/10.1109/WCRE.2013.6671282

	Abstract
	1 Introduction
	2 Architecture and Tools
	3 Dataset Construction
	4 Impact and Research Directions
	5 Conclusions
	References

