
Software Task Importance Prediction based on
Project Management Data

Themistoklis Diamantopoulos, Christiana Galegalidou, and Andreas L. Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece

thdiaman@issel.ee.auth.gr, chrigale@ece.auth.gr, symeonid@ece.auth.gr

Keywords: Task Importance, Bug Severity, Ordinal Classification, Project Management, Task Management

Abstract: With the help of project management tools and code hosting facilities, software development has been trans-
formed into an easy-to-decentralize business. However, determining the importance of tasks within a software
engineering process in order to better prioritize and act on has always been an interesting challenge. Although
several approaches on bug severity/priority prediction exist, the challenge of task importance prediction has
not been sufficiently addressed in current research. Most approaches do not consider the meta-data and the
temporal characteristics of the data, while they also do not take into account the ordinal characteristics of the
importance/severity variable. In this work, we analyze the challenge of task importance prediction and propose
a prototype methodology that extracts both textual (titles, descriptions) and meta-data (type, assignee) charac-
teristics from tasks and employs a sliding window technique to model their time frame. After that, we evaluate
three different prediction methods, a multi-class classifier, a regression algorithm, and an ordinal classification
technique, in order to assess which model is the most effective for encompassing the relative ordering between
different importance values. The results of our evaluation are promising, leaving room for future research.

1 INTRODUCTION

Software development nowadays is a collaborative
process, taking place in online code hosting facilities,
such as GitHub1, and being supported by project man-
agement systems, such as Jira2. Using these types
of tools, developers can monitor the software devel-
opment process in a fine-grained way, by assigning
tasks, prioritizing features, resolving bugs, planning
releases, and generally keeping track of the evolution
of their project.

In this collaborative context, and especially for
large projects with multiple contributors, it is often
required to prioritize the various tasks of a project.
The process of determining the importance of a task
(or an issue) is crucial, as it affects the prioritization
of the task with respect to the development sprints as
well as the expected duration for the completion of
the issue itself. And yet the decision is usually non-
trivial; there are typically no clear rules on how the
level of importance is defined, thus leaving the deci-
sion up to the personal judgment of the team mem-
bers. Consequently, the tasks of the project at hand

1https://github.com/
2https://www.atlassian.com/software/jira

are often flagged with inconsistent or badly planned
importance values, this way complicating the man-
agement of the project and giving rise to major issues
in project development.

We argue that a challenge that arises in this
context is whether we can automate the process of
task importance assignment in task management sys-
tems. Most contemporary research efforts have not
focused specifically on this challenge; they have fo-
cused instead on the challenges of bug priority pre-
diction (Sharma et al., 2012; Tian et al., 2015; Kan-
wal and Maqbool, 2012) and bug severity prediction
(Lamkanfi et al., 2010; Lamkanfi et al., 2011; Yang
et al., 2012; Roy and Rossi, 2014; Menzies and Mar-
cus, 2008; Tian et al., 2012; Yang et al., 2014). Fur-
thermore, the input of certain approaches is limited to
textual data (i.e. issue titles and descriptions) and the
time frame of the data is not considered. This way,
the prediction may be based on data that are quite dif-
ferent from the issue under analysis, especially when
they are extracted from issues more than a few months
old. Finally, most approaches do not account for the
ordinal characteristics of the output, i.e. the fact that
the priority/severity of an issue is defined on an arbi-
trary scale where the relative ordering between differ-
ent values is significant.

In this paper, we propose a methodology that over-
comes the aforementioned limitations. Given input
from the task management system of a project, our
system employs information including both textual
and meta-data, such as the type or the assignee of the
task, in order to predict the importance of a task. The
time frame of the tasks is taken into account so that
task priorities are determined by data that are tempo-
rally close. As far as the ordinal characteristics of the
output are concerned, we apply three different mod-
els, a multi-class classifier, a regression model and an
ordinal classifier in order to examine which method is
better suited for the challenge at hand.

The rest of this paper is organized as follows. Sec-
tion 2 disambiguates the term importance from the
terms priority and severity and reviews the related
work. Our methodology for a task importance rec-
ommender is presented in Section 3. Section 4 eval-
uates our approach against a set of software projects
and Section 5 discusses the perceived challenges in
the area of task importance prediction. Finally, Sec-
tion 6 concludes this work and provides useful insight
for future research.

2 RELATED WORK

As already mentioned, related work in the area of
task importance prediction/classification is rather lim-
ited. There is, however, a considerable volume of
work regarding bug priority prediction and bug sever-
ity prediction, which are similar challenges, yet re-
quire some careful disambiguation. In specific, we
may define the priority of a task as a measure that in-
dicates how urgent it is to deliver that specific task.
On the other hand, severity determines the impact of
a task (or, much more often, a bug) on the project at
hand (Lamkanfi et al., 2011). In other words, priority
answer to the question ‘what to implement/fix first’,
whereas severity answers to the question ‘how much
impact does fixing this have to the system’.

In the context of this work, task importance can
be defined as a measure of how much the delivery of
a task impacts the software project at hand. There-
fore, it is most similar to the concept of severity rather
than that of priority3. Indeed, bug priority is usually
measured in categories P1-P4 (or, sometimes, P1-P5),
where P1 indicates that the bug must be fixed as soon
as possible and P4 (or P5) indicates that the bug will
never be fixed (Uddin et al., 2017). Severity, on the
other hand, usually takes values such as Trivial, Mi-

3Interestingly, however, we could note that defining the
importance/severity of an issue can be quite helpful for pri-
oritizing.

nor, Major, Critical, and Blocker in increasing order
of importance.

Further concerning severity prediction, which is
most relevant to this work, certain research efforts
consider a more coarse-grained output merging sever-
ity values into two levels of importance (i.e. severe
and non-severe). One such approach is proposed
by Lamkanfi et al. (2010) who used data from three
open-source projects monitored by the bug tracking
system Bugzilla4. The authors applied tokenization
on bug descriptions and employed a Naı̈ve Bayes
classifier to classify bugs into severe and non-severe.
Further extending their work (Lamkanfi et al., 2011),
the authors evaluated three more algorithms, an 1-
Nearest Neighbor classifier, a Support Vector Ma-
chines classifier, and a Naı̈ve Bayes Multinomial clas-
sifier, proving the latter to be the most effective.

A similar approach was followed by Yang et al.
(2012) who focused mainly on feature selection. The
authors employed three different features selection
techniques, the Information Gain, the chi-squared
(χ2), and the Correlation Coefficient, in order to de-
termine the terms that are the most decisive for clas-
sifying bug reports in the severe and non-severe cate-
gories. Finally, another approach that focuses mainly
on text algorithms is that of Roy and Rossi (2014).
The authors also extract data from Bugzilla and eval-
uate three configurations, one with single text tok-
enization, one with tokens and bigrams, and one with
tokens, bigrams, and chi-squared feature selection.
Their results indicate the latter to be the most effective
in predicting bug severity.

There are also several approaches that consider
fine-grained output with five or more classes of sever-
ity. An example system in this category is SEVERIS
(Menzies and Marcus, 2008), which is trained using
data from the NASA PITS database. The system ex-
tracts tokens from bug reports and applies the Infor-
mation Gain for feature selection before finally em-
ploying the RIPPER rule learner (Cohen and Singer,
1999) to determine the severity of each report. IN-
SPect (Tian et al., 2012) follows a rather different ap-
proach, extracting both text tokens and other features
(such as, e.g., the component that is relevant to the re-
port) and creating a metric that computes the similar-
ity between two Bugzilla bug reports. After that, IN-
SPect employs a nearest-neighbors algorithm to deter-
mine the class of a bug report base on the class of its
neighbors. Finally, another similar approach is pro-
posed by Yang et al. (2014) who first employ LDA
to categorize the bug reports to different topics and
then consider the nearest neighbors of each bug report
within its topic in order to predict its severity.

4https://www.bugzilla.org/

Preprocessing Importance

Title Description

Reporter

Type

Title Model

Description Model

Meta-data Model

Figure 1: Methodology for Task Importance Assignment

Although the aforementioned approaches are ef-
fective for bug severity prediction, they do not always
conform to the challenge of task importance predic-
tion. Tasks from project management systems may
describe features, requirements, or even issues in the
code or the documentation, whereas bugs refer usu-
ally to faults in the project. Thus, effectively predict-
ing the importance of tasks requires considering the
textual sources of information and modeling also the
meta-data relevant to the type and the specifics of the
task. In this paper, we propose a methodology that
considers both types of information to predict the im-
portance of tasks using models that are effective for
ordinal characteristics.

3 METHODOLOGY

Our methodology for automated task importance as-
signment is outlined in Figure 1. The input is given
in the form of the project management data of a soft-
ware project, which is initially preprocessed to extract
its text, description, and other information/meta-data
(type, assignee). After that, we employ a different
model for each type of (title, description, information)
and, finally, we aggregate the outputs of all models in
order to recommend the importance value.

Concerning the data, we have retrieved the dataset
crafted by Ortu et al. (2015) and set up a PostgreSQL
database instance according to the authors’ instruc-
tions5. The dataset includes project management data
extracted from the Jira repositories of the Apache
Software Foundation6. It includes approximately
1000 projects with more than 700,000 tasks/issues.
Our methodology is obviously agnostic, as it can re-
ceive input from any project management platform,
however we use here data from Jira as a proof of con-
cept. An example task for project CouchDB is shown
in Figure 2.

5https://github.com/marcoortu/jira-social-repository
6https://issues.apache.org/jira/

Notice that each task comprises a handful of infor-
mation, including not only its title and description, but
also its status, its relevant components, its assignee,
etc. Furthermore, at the right side of Figure 2, we
may see the temporal characteristics of the task. Con-
cerning importance, Jira actually defines it using the
term ‘priority’, which however is rather inaccurate as
discussed in Section 2. Despite this inaccuracy, this
metric actually represents importance (or severity) as
it receives the values Trivial, Minor, Major, Critical,
and Blocker. Hence, we hereafter refer to this metric
as ‘importance’.

In our case, the analysis is performed per project,
thus we have used a database connector to retrieve
one project at a time and perform the steps outlined
in Figure 1 to build a prediction model per project.

3.1 Data Preprocessing

As our methodology is applied on actual projects, sev-
eral tasks may have incomplete or default importance
values. Thus, the first step is to remove any tasks
without importance value as well as any task with the
default value given by Jira (i.e. ‘Major’) when the user
selects not to assign an importance value.

After that, we preprocess the text fields of the
tasks, i.e. the titles and the descriptions. Initially, we
parse the texts and remove all html tags. Also, each
text is split into tokens and all punctuation is removed.
Then, we perform stemming to remove word endings
(e.g. ‘running’ becomes ‘run’) and lemmatization to
replace each term with its base form (e.g. ‘better’ be-
comes ‘good’). The next step is to remove all num-
bers, single characters, and stop words using the list
of NLTK7. As an example application of our prepro-
cessing pipeline, the description of the task of Figure
2 is transformed into the following tokens: [create,
helper, function, pull, document, url, way, url, change,
update, one, place].

Finally, concerning the rest of the fields shown
in Figure 2, we use the type and assignee, as these

7https://www.nltk.org/

Figure 2: Example Task of Project CouchDB

have been shown to yield better results in our analy-
sis. Both fields are converted to ids. Assignees were
replaced by their corresponding system IDs, while the
type of the task was replaced by a numerical value ac-
cording to Table 1. For each project, we also flagged
the types with less than 10 occurrences as outliers and
removed the corresponding tasks from the project.

Table 1: ID Conversion of Task Type

Type # Type

1 Bug 9 Story
2 Component Upgrade 10 Sub-task
3 Documentation 11 Support
4 Improvement 12 Task
5 New Feature 13 Temp
6 Quality Risk 14 Test
7 Question 15 Wish
8 Refactoring

3.2 Data Models

As already mentioned, our methodology takes into ac-
count both the textual features and the meta-data of
the tasks. Thus, in the following subsections we de-
scribe two data models, one used for the title and the
description of the tasks and one used for their meta-
data (type and assignees).

Task Text Model We build two text models, one for
task titles and one for task descriptions. For each one
of them, we employ a vector space model where texts
(titles or descriptions) are represented as documents
and words/terms are represented as dimensions. Us-
ing the Tf-Idf vectorizer, we create the vector rep-
resentation for each document/text. In specific, the

weight (value of the vector) of each term t in a docu-
ment d is defined as:

t f id f (t,d,D) = t f (t,d) · id f (t,D) (1)

where the factor t f (t,d) is the term frequency of term
t in document d and refers to the number of occur-
rences of the term t in the document (title or descrip-
tion). The factor id f (t,D) is the inverse document
frequency of term t in the set of all documents (titles
or descriptions) D. The id f (t,D) in our implementa-
tion is defined as:

id f (t,D) = 1+ log
(

1+ |D|
1+ |dt |

)
(2)

where |dt | is the number of documents containing the
term t, i.e. the number of titles or descriptions that
include the relevant term. The inverse document fre-
quency is used to penalize very common terms in the
corpus (e.g. “issue” or “component”), as they may act
as noise to our model.

Task Meta-data Model Concerning the meta-data
model, which for the proof of concept proposed by
this paper comprises the type and the assignee of each
task, we could immediately apply a classification al-
gorithm. However, by doing so, the temporal charac-
teristics of the data would not be considered. Instead,
we implemented a sliding window technique so that
the importance of a new task is predicted using the re-
cent tasks, which are intuitively expected to have sim-
ilar characteristics. Consider, for instance, that a task
has an assignee A that lately delivers mostly Critical
tasks; assigning him/her a new task at this time would
probably mean that the task is Critical and not Mi-
nor. Obviously, this is related to the number of open
tasks and the number of developers available. How-
ever, practice says that when one performs well, then

he/she is assigned with relevant tasks, both in context,
as well as importance.

Hence, to model the temporal characteristics of
numerical values, we use the sliding technique shown
in Figure 3. Given that the tasks are ordered accord-
ing to the date they were created, we initially choose
a sliding window size s (in our case set to 50 after ex-
perimentation). Then, for each new task we use the
data from the previous s tasks to predict its impor-
tance value. For the s+ 1-th task, we use data from
the tasks 1 to s, for the s+2-th task, we use data from
the tasks 2 to s+1, and so on till the last (n-th) task.

1 2 s+2s+1... n-1 n

Window Position 1

Window Position 2

Window Size (s)

s ...

Figure 3: Sliding Window Technique

3.3 Importance Prediction

Upon having processed our data inputs, we proceed
to applying prediction techniques in order to predict
the importance of a given task. As there are three in-
puts, one for titles, one for descriptions, and one for
meta-data, we build three models that we later aggre-
gate to produce a single importance value (as shown
in Figure 1). We apply simple averaging for the ag-
gregation since it is adequate as a proof of concept
that using more information leads to better results.

An important consideration for selecting a predic-
tion technique is the fact that the output has ordinal
characteristics. In other words, the relative ordering
between different importance classes is significant.
Thus, we expect that using an algorithm that considers
the order of the classes can be more effective that us-
ing a typical classification algorithm. To test this hy-
pothesis, we have applied three algorithms, all based
on Support Vector Machines (SVM), which are de-
scribed in the following subsections.

Classification Our first model is the SVM classi-
fier provided by scikit-learn (Pedregosa et al., 2011)
with an RBF kernel and default parameter values,
i.e. the Support Vector Classifier (SVC). The algo-
rithm follows the one-versus-one approach to multi-
class classification. According to that approach, given
c classes, we build (c · (c− 1))/2 binary classifiers,
one for each pair of classes. For the classes Triv-
ial, Minor, Critical, and Blocker, we have six classi-
fiers: Trivial-vs-Minor, Trivial-vs-Critical, Trivial-vs-
Blocker, Minor-vs-Critical, Minor-vs-Blocker. After

training and executing the models, the resulting class
is determined using majority voting.

Regression A straightforward way to model ordi-
nal output variables is by using regression techniques,
i.e. Support Vector Regression (SVR). In regression,
the dependent variable takes continuous values, which
obviously have ordering. In our case, the SVR model
outputs values in the range [1,4]. The next step is to
translate the continuous output values into class prob-
abilities. To do so, we use the following equation:

yi =

1
i− yr

1
1− yr

+
1

2− yr
+

1
3− yr

+
1

4− yr

(3)

where yr is the output of the SVR, and yi is the final
probability of class i. Finally, the class predicted by
the algorithm is the one with the maximum probabil-
ity, i.e. argmaxi(yi).

Ordinal Classification For our third classifier, we
employed the ordinal classification approach pro-
posed in (Frank and Hall, 2001). The technique in-
cludes one less model than the class variables, with
each of them predicting the probability of being larger
than one of the first three class values. In our case, the
three models provide as output the values of P(y >
Trivial), P(y > Minor), and P(y > Critical). After
that, the probability of each class is provided by the
following set of equations:

P(y = Trivial) = 1−P(y > Trivial)
P(y = Minor) = P(y > Trivial)−P(y > Minor)
P(y =Critical) = P(y > Minor)−P(y >Critical)
P(y = Blocker) = P(y >Critical) (4)

Finally, concerning the output of this Support Vector
Ordinal Classifier (SVOC), the class predicted by the
algorithm is the one with the maximum probability,
i.e. argmaxc(P(y = c)).

4 EVALUATION

4.1 Evaluation Framework

To illustrate the applicability of our claims and pro-
vide an initial proof of concept for them, we have se-
lected a dataset of 10 projects. These projects were se-
lected as they are large enough to provide useful data
(e.g. all have more than 2000 tasks) and have multi-
ple importance values without excessive class imbal-
ances. The projects of our evaluation dataset, along

Precision Recall F-score Accuracy
Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e 0.44

0.53
0.48

0.53
0.46

0.56
0.51

0.56

0.47

0.57
0.51

0.57

Title
Title & Description
Title & Description & Extra

(a)

Precision Recall F-score Accuracy
Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e 0.43

0.57

0.49

0.57

0.47
0.51 0.49 0.51

0.47

0.57
0.51

0.57

SVC
SVR
SVOC

(b)
Figure 4: Evaluation Results, including (a) Comparison of Data Models, and (b) Comparison of Importance Classifiers

with certain statistics about their tasks and contribu-
tors are shown in Table 2. In all projects, we use the
first 80% of the data as training set and the most re-
cent 20% of the data as test set.

Table 2: Evaluation Dataset of Jira Projects

Project #Tasks #Contributors

AS7 5428 676
CLOUDSTACK 5494 399
COUCHDB 2004 577
GRAILSPLUGINS 2923 985
ISPN 3836 314
JBESB 3870 251
JBPAPP 5759 398
MAPREDUCE 5478 751
WFLY 2469 464
XERCESC 2022 1238

In order to evaluate our hypothesis, we have per-
formed two experiments. The first aspires to evalu-
ate the data models described in subsection 3.2 while
the second attempts to assess the effectiveness of the
three importance prediction techniques of subsection
3.3. For both experiments, we used the classification
metrics of Precision, Recall, F-score, and Accuracy.

4.2 Evaluation of Data Models

Concerning the evaluation of the different data mod-
els, we keep only SVOC and test three configurations,
one using only the titles of the tasks, one using the ti-
tles and the descriptions, and one using all available
data (i.e. including also the meta-data). The results of
our analysis are shown in Figure 4a. Since tasks are
split into four classes of importance, our results seem
effective enough for a task importance recommender.

Moreover, given this graph, we confirm our intuition
that employing more data leads to better results.

It is clear that using also the descriptions of the
tasks instead of only the titles results in higher values
concerning all four evaluation metrics. The results
also indicate that meta-data can offer useful informa-
tion; the data model that uses all data seems to per-
form more effectively than the other two models in all
metrics. This outcome is rather expected, considering
that the type and the assignee of the task are indicative
of its importance. Finally, given these promising re-
sults, as future work, one may consider extending our
model to the rest of the data provided for each task.

4.3 Evaluation of Importance
Classifiers

The results of the evaluation of our three importance
classifiers are shown in Figure 4b. At first glance, one
may notice that the regression algorithm (SVR) does
not perform as effectively as the other two techniques.
SVR seems to achieve high precision (and, thus, f-
score), however its values on recall and accuracy are
clearly lower than those of the other two algorithms.
This is actually expected as regression algorithms are
generally not suitable for classification problems. Al-
though in our case importance is an ordinal variable,
it is certainly not continuous.

Concerning the other two implementations, our
ordinal classifier (SVOC) seems to outperform the
SVC technique when it comes to precision (and,
therefore, F-score). For the recall and accuracy met-
rics, the two algorithms have similar effectiveness.
This is actually quite an interesting outcome, indicat-
ing that SVOC successfully models the output class,
and thus can be used effectively for ordinal classifica-
tion problems such as the one analyzed in this work.

5 CHALLENGES IN TASK
IMPORTANCE PREDICTION

Upon laying the foundation of the task importance
prediction challenge and providing an initial proof of
concept, we discuss any limitations, along with open
issues to be addressed. First and foremost, we note
that research works for the challenge itself are quite
limited. As already mentioned in Section 2, most re-
search efforts focus on bug severity prediction, a chal-
lenge that may be similar, however concerns mainly
the maintenance phase of the software development
process. For the same reason, project/task manage-
ment datasets are also few, especially compared to
their vast counterparts originating from bug track-
ing systems (Lamkanfi et al., 2013). An interesting
idea in this context would be to attempt to extract
issues from code hosting services, such as GitHub,
which are also often used only for bugs, however they
are also sometimes used to track feature development
(Diamantopoulos et al., 2020).

Another important note supported by our evalua-
tion results is the fact that employing both textual in-
formation and meta-data can lead to better importance
predictions. This observation is on par with current
research in bug severity prediction (Tian et al., 2012),
while it also conforms with approaches in relevant re-
search fields, such as automated issue/bug assignment
(Matsoukas et al., 2020; Anvik et al., 2006). More-
over, our intuition tells us that using temporal charac-
teristics can further improve on the results; despite not
proven explicitly in this paper, following an holistic
approach should provide more effective predictions if
we consider similar works (Tian et al., 2015).

Concerning the output, in this work we have con-
sidered projects that did not exhibit excessive imbal-
ance among the task importance classes. We have, of
course, removed any default instances, as supported
by current research (Menzies and Marcus, 2008),
however we would certainly propose a more rigor-
ous analysis for other projects. We have focused
mainly on the ordinal characteristics of the output and
tested three different importance prediction scenarios.
Our evaluation results indicate an ordinal classifica-
tion method to be the most efficient, whereas a typ-
ical SVM classifier also had acceptable results. On
the other hand, using regression does not seem to be
a good fit for this problem.

Concerning our methodology, we note that it pro-
vides interesting paths for future research. As our
main purpose has been to provide a proof of concept,
we have made certain assumptions as to the data and
the model parameters. In specific, we selected open-
source projects with multiple contributors, as these

are representative of contemporary practice in soft-
ware development. We have selected projects that
do not exhibit class imbalance, and further assumed
that task types with few occurrences are outliers and
thus dropped the relevant tasks. Moreover, the size
of the sliding window for the temporal characteris-
tics was set arbitrarily upon experimentation; an in-
teresting extension would be to set this value in a
temporal manner (e.g. considering the tasks of the
past month) or even according to the specifics/status
of each project (e.g. maintenance periods have been
shown to exhibit different characteristics from active
development periods (Papamichail et al., 2019)). Fi-
nally, there is of course ample room for further re-
search concerning the types of models involved as
well as the way they are combined; e.g. one could
employ a single model for all input variables (both
textual and meta-data) or try using text embeddings
and/or neural networks.

6 CONCLUSIONS

As software development is more and more be-
coming a collaborative process that is supported by
project/task management systems, the need for au-
tomation is more imminent than ever. In this paper,
we have described the challenge of task importance
prediction, of which the automation can certainly save
valuable time and effort during the software develop-
ment process. As a proof of concept, our method-
ology has been proven effective for task importance
prediction and has provided interesting points of dis-
cussion. Apart from illustrating the benefits of con-
sidering both textual and non-textual data, our results
have moreover shown that the ordinal characteristics
of the importance variable should be taken into ac-
count.

As future work, we plan to improve on all as-
pects of our methodology, while focusing on the chal-
lenges described in Section 5. In specific, concern-
ing our data model, one could employ more informa-
tion including not only the type and the assignee of
each task, but also its labels, components, etc. More-
over, we could investigate the effectiveness of differ-
ent modeling techniques (including e.g. text embed-
dings instead of the tf-idf vector space model) as well
as different aggregation techniques (instead of averag-
ing over the results of the classifiers). Other areas of
focus include addressing the class imbalance that may
be found in different projects as well as further ex-
perimenting on the importance prediction algorithms
(e.g. by also evaluating an one-vs-many SVC or even
testing other types of algorithms).

REFERENCES

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who Should
Fix This Bug? In Proceedings of the 28th Inter-
national Conference on Software Engineering, ICSE
’06, pages 361–370, New York, NY, USA. Associa-
tion for Computing Machinery.

Cohen, W. W. and Singer, Y. (1999). A Simple, Fast, and
Effective Rule Learner. In Proceedings of the 16th
National Conference on Artificial Intelligence and the
11th Innovative Applications of Artificial Intelligence
Conference Innovative Applications of Artificial Intel-
ligence, AAAI ’99/IAAI ’99, pages 335–342, USA.
American Association for Artificial Intelligence.

Diamantopoulos, T., Papamichail, M., Karanikiotis, T.,
Chatzidimitriou, K., and Symeonidis, A. (2020). Em-
ploying Contribution and Quality Metrics for Quan-
tifying the Software Development Process. In Pro-
ceedings of the IEEE/ACM 17th International Con-
ference on Mining Software Repositories, MSR ’20,
pages 558–562, Seoul, South Korea. Association for
Computing Machinery.

Frank, E. and Hall, M. (2001). A Simple Approach to Or-
dinal Classification. In Proceedings of the 12th Eu-
ropean Conference on Machine Learning, EMCL ’01,
pages 145–156, Berlin, Heidelberg. Springer-Verlag.

Kanwal, J. and Maqbool, O. (2012). Bug Prioritization to
Facilitate Bug Report Triage. Journal of Computer
Science and Technology, 27(2):397–412.

Lamkanfi, A., Demeyer, S., Giger, E., and Goethals, B.
(2010). Predicting the Severity of a Reported Bug.
In Proceedings of the 2010 7th IEEE Working Con-
ference on Mining Software Repositories, MSR ’10,
pages 1–10. IEEE Computer Society.

Lamkanfi, A., Demeyer, S., Soetens, Q. D., and Verdonck,
T. (2011). Comparing Mining Algorithms for Predict-
ing the Severity of a Reported Bug. In Proceedings
of the 2011 15th European Conference on Software
Maintenance and Reengineering, CSMR ’11, pages
249–258, USA. IEEE Computer Society.

Lamkanfi, A., Pérez, J., and Demeyer, S. (2013). The
Eclipse and Mozilla Defect Tracking Dataset: A Gen-
uine Dataset for Mining Bug Information. In Proceed-
ings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13, pages 203–206. IEEE
Press.

Matsoukas, V., Diamantopoulos, T., Papamichail, M., and
Symeonidis, A. (2020). Towards Analyzing Contri-
butions from Software Repositories to Optimize Issue
Assignment. In Proceedings of the 2020 IEEE In-
ternational Conference on Software Quality, Reliabil-
ity and Security, QRS 2020, pages 243–253, Vilnius,
Lithuania. IEEE Press.

Menzies, T. and Marcus, A. (2008). Automated Severity
Assessment of Software Defect Reports. In Proceed-
ings of the 2008 IEEE International Conference on
Software Maintenance, ICSM 2008, pages 346–355.
IEEE Computer Society.

Ortu, M., Destefanis, G., Adams, B., Murgia, A., March-
esi, M., and Tonelli, R. (2015). The JIRA Repository
Dataset: Understanding Social Aspects of Software
Development. In Proceedings of the 11th Interna-
tional Conference on Predictive Models and Data An-
alytics in Software Engineering, PROMISE ’15, New
York, NY, USA. Association for Computing Machin-
ery.

Papamichail, M. D., Diamantopoulos, T., Matsoukas, V.,
Athanasiadis, C., and Symeonidis, A. L. (2019). To-
wards Extracting the Role and Behavior of Contribu-
tors in Open-source Projects. In Proceedings of the
14th International Conference on Software Technolo-
gies, ICSOFT 2019, pages 536–543, Prague, Czech
Republic. SciTePress.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Roy, N. K. S. and Rossi, B. (2014). Towards an Improve-
ment of Bug Severity Classification. In Proceedings
of the 2014 40th EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, SEAA
’14, pages 269–276, USA. IEEE Computer Society.

Sharma, M., Bedi, P., Chaturvedi, K. K., and Singh, V. B.
(2012). Predicting the priority of a reported bug using
machine learning techniques and cross project valida-
tion. In Proceedings of the 2012 12th International
Conference on Intelligent Systems Design and Appli-
cations, ISDA 2012, pages 539–545.

Tian, Y., Lo, D., and Sun, C. (2012). Information
Retrieval Based Nearest Neighbor Classification for
Fine-Grained Bug Severity Prediction. In Proceed-
ings of the 2012 19th Working Conference on Reverse
Engineering, WCRE ’12, pages 215–224, USA. IEEE
Computer Society.

Tian, Y., Lo, D., Xia, X., and Sun, C. (2015). Automated
Prediction of Bug Report Priority Using Multi-Factor
Analysis. Empirical Softw. Engg., 20(5):1354–1383.

Uddin, J., Ghazali, R., Deris, M. M., Naseem, R., and Shah,
H. (2017). A Survey on Bug Prioritization. Artif. In-
tell. Rev., 47(2):145–180.

Yang, C.-Z., Hou, C.-C., Kao, W.-C., and Chen, I.-X.
(2012). An Empirical Study on Improving Severity
Prediction of Defect Reports Using Feature Selection.
In Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference - Volume 01, APSEC ’12,
pages 240–249, USA. IEEE Computer Society.

Yang, G., Zhang, T., and Lee, B. (2014). Towards Semi-
Automatic Bug Triage and Severity Prediction Based
on Topic Model and Multi-Feature of Bug Reports.
In Proceedings of the 2014 IEEE 38th Annual Com-
puter Software and Applications Conference, COMP-
SAC ’14, pages 97–106, USA. IEEE Computer Soci-
ety.

