Over the last decade, a transformation in the automotive industry has been witnessed, as advancements in artificial intelligence and sensor technology have continued to accelerate the development of driverless vehicles. These systems are expected to significantly reduce traffic accidents and associated costs, making their integration into future transportation systems highly impactful. To explore this field in a controlled and flexible manner, scaled autonomous vehicle platforms are increasingly adopted for experimentation. In this work, we propose a set of methodologies to perform autonomous driving tasks through a software–hardware co-design approach. The developed system focuses on deploying a modular and reconfigurable software stack tailored to run efficiently on constrained embedded hardware, demonstrating a balance between real-time capability and computational resource usage. The proposed platform was implemented on a 1:10 scale vehicle that participated in the Bosch Future Mobility Challenge (BFMC) 2024. It integrates a high-performance embedded computing unit and a heterogeneous sensor suite to achieve reliable perception, decision-making, and control. The architecture is structured across four interconnected layers—Input, Perception, Control, and Output—allowing flexible module integration and reusability. The effectiveness of the system was validated throughout the competition scenarios, leading the team to secure first place. Although the platform was evaluated on a scaled vehicle, its underlying software–hardware principles are broadly applicable and scalable to larger autonomous systems.
Read more: Here