Knee osteoarthritis (KOA) is a most prevalent chronic muscoloskeletal disorder causing pain and functional impairment. Accurate predictions of KOA evolution are important for early interventions and preventive treatment planning. In this paper, we propose a novel dynamic hypergraph-based risk model (DyHRM) which integrates the encoder–decoder (ED) architecture with hypergraph convolutional neural networks (HGCNs). The risk model is used to generate longitudinal forecasts of KOA incidence and progression based on the knee evolution at a historical stage. DyHRM comprises two main parts, namely the dynamic hypergraph gated recurrent unit (DyHGRU) and the multi-view HGCN (MHGCN) networks. The ED-based DyHGRU follows the sequence-to-sequence learning approach. The encoder first transforms a knee sequence at the historical stage into a sequence of hidden states in a latent space. The Attention-based Context Transformer (ACT) is designed to identify important temporal trends in the encoder’s state sequence, while the decoder is used to generate sequences of KOA progression, at the prediction stage. MHGCN conducts multi-view spatial HGCN convolutions of the original knee data at each step of the historic stage. The aim is to acquire more comprehensive feature representations of nodes by exploiting different hyperedges (views), including the global shape descriptors of the cartilage volume, the injury history, and the demographic risk factors. In addition to DyHRM, we also propose the HyGraphSMOTE method to confront the inherent class imbalance problem in KOA datasets, between the knee progressors (minority) and non-progressors (majority). Embedded in MHGCN, the HyGraphSMOTE algorithm tackles data balancing in a systematic way, by generating new synthetic node sequences of the minority class via interpolation. Extensive experiments are conducted using the Osteoarthritis Initiative (OAI) cohort to validate the accuracy of longitudinal predictions acquired by DyHRM under different definition criteria of KOA incidence and progression. The basic finding of the experiments is that the larger the historic depth, the higher the accuracy of the obtained forecasts ahead. Comparative results demonstrate the efficacy of DyHRM against other state-of-the-art methods in this field.

Read more: Here